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INTRODUCTION

Chemical cues have been shown to play an impor-
tant role in the life of fishes. Olfaction is, e.g., involved
in homing (Atema et al. 2002, Gerlach et al. 2007, Dix-
son et al. 2008), food finding (Bardach et al. 1967, Kasu -
myan 2002, Barata et al. 2009), species recognition
(Ojanguren & Brana 1999, Wong et al. 2005, Guevara-
Fiore et al. 2010), kin recognition (Thünken et al. 2009,
Mehlis et al. 2010) and predator recognition (Brown et
al. 2000, Mikheev et al. 2006, Fincel et al. 2010). In
cichlids, odours play a role in species recognition (Plen-
derleith et al. 2005) and in the recognition of parents
and offspring (Nelissen 1991, Wisenden & Dye 2009),
mates (Reebs 1994), kin (Thünken et al. 2009, 2011)
and predators (Foam et al. 2005), indicating that they
have a well-developed olfactory sensory system. Simi-
lar to many benthic fishes, cichlids frequently interact
with the substrate in their aquatic habitat (Barlow
2000). By their digging behaviour, they influence the

distribution of sand across patches in rivers and lakes
(Statzner et al. 2003). Also, they often transfer sand out-
side the nest during courtship and breeding; this
behaviour might serve as a signal in conspecific inter-
action or as an anti-predator defence (Ochi & Yanagi-
sawa 1999). Extreme forms of such non-bodily signals
are the sand craters built by several species of East
African cichlids like Cyathopharynx furcifer (Schaede -
lin & Taborsky 2010).

Therefore, cichlid welfare is positively influenced by
access to substrate (Galhardo et al. 2008), and cichlids
prefer sandy over other environments (Galhardo et
al. 2009).

However, under experimental conditions, the pres-
ence of substrate might be disadvantageous. In experi-
ments, fish then often show a lack of contrast when ob -
served from above, which makes the evaluation of their
behaviour difficult (e.g. by analyzing video-recordings).
Additionally, the digging behaviour of cichlids (Ochi &
Yanagisawa 1999, Statzner et al. 2003) might impair ob-
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servation. Hence, a natural setting during experiments
has to be carefully traded off against difficulties of ob-
servation. As a result, substrate is often removed from
experimental setups at the cost that fish might behave
unnaturally.

The aim of the present study was to develop a non-
invasive method of increasing fish activity in a novel
environment. Instead of providing sand as a substrate,
water previously exposed to sand (‘sand-treated
water’) was used in the experiment, and fish behaviour
in sand-treated water was compared with that in tap
water. Experiments were conducted with males and
females of the cichlid Pelvicachromis taeniatus (Bou -
lenger, 1901). It has a well-developed sense of smell
and is able to discriminate between its own and famil-
iar kin chemical cues (Thünken et al. 2009). Also,
P. taeniatus males interact intensively with available
sand and construct sand piles in front of their breeding
caves (Baldauf 2006).

Fishes are known to reduce their swimming behav-
iour (i.e. speed or distance) in response to un -
favourable or novel conditions (Godin 1997, Brown et
al. 2001, Huntingford et al. 2006, Wilson et al. 2010).
Therefore, the covered distance was measured as a
proxy for activity and acclimatisation. Among cichlids,
males are the predominant sex in substrate interaction,
especially in the context of nest building (Baldauf 2006,
Mendonça et al. 2010, Schaedelin & Taborsky 2010).
Thus, one would predict that male P. taeniatus show a
stronger response than females to sand-treated water.

MATERIALS AND METHODS

Experimental animals. Fish were descendants of
wild-caught Pelvicachromis taeniatus from the Moliwe
River near Limbe, Cameroon (04° 04’ N, 09° 16’ E). Prior
to the experiment, the experimental fish were kept in
mixed sex groups with up to 30 individuals in five 60 ×
45 × 30 cm (length × width × height) tanks, equipped
with java moss Taxiphyllum barbieri and sand as sub-
strate. The tanks were positioned on a white poly-
styrene layer and separated from each other by
opaque plastic sheets. Illumination was provided in
a 12 h light:12 h dark cycle (from 09:00 to 21:00 h) by
 fluorescent tubes (Lumilux Plus Eco L36W/21-840,
Osram) 8 cm above the tank. Water temperature was
kept constant at 25 ± 1°C. Fish were fed daily ad libi-
tum with a mix of defrosted food that contained
 mosquito larvae of the genera Chironomus, Culex and
Chao borus, as well as Artemia sp. in a ratio of
2:1:0.25:1.

Water preparation. Preparation of the water used for
the treatment groups was conducted in four 50 × 30 ×
30 cm (length × width × height) tanks, called ‘prepara-

tion tanks’ from now on. One day prior to the experi-
ment, tanks were filled with 40.5 l of tap water. To cre-
ate sand-treated water, three 105 ml cups filled with
substrate were added to half of the preparation tanks.
The substrate used in the experiment was commer-
cially obtained Rhine sand that consists of >90%
quartz sand. The substrate consisted of approximately
5% fine sand (particles <0.18 mm), 75% of the volume
was medium sand (0.18 to 0.50 mm) and 10% was
coarse sand (0.50 to 1.50 mm). The last 10% of the total
volume consisted of fine gravel (1.50 to 3.50 mm). The
315 ml volume used for each sand-water preparation
tank weighed on average (±SD) 413.32 ± 19.06 g (n =
10). Sand in the holding tanks was of the same origin
as that used in the experiments. The tanks used for
preparing sand-treated water and tap water were
cleaned after conducting all experiments each day.
Subsequently, treatments were reassigned to the tanks
randomly; a sand-water tank was always placed next
to a tap-water preparation tank.

Experimental design. The experiments were con-
ducted in four 30 × 20 × 20 cm tanks placed in a square
fashion. Each tank was covered with a 30 × 20 cm
transparent, 1 cm thick Plexiglas pane.

Furthermore, all tanks were surrounded by a white
polystyrene layer to prevent visual contact between
fish. This setup was placed on a 74 cm high table.
Tanks were illuminated by a fluorescent tube (Lumilux
Plus Eco L36W/21-840, Osram) placed 70 cm above the
tanks. For video recording, a web camera (QuickCam
Pro 9000, Logitech) was placed 57 cm above the exper-
imental setup.

Experimental procedure. Each day, the tanks were
filled with 9 l of the previously prepared water in such
a way that diagonally positioned tanks became the
same treatment. Prior to filling the experimental tanks,
the temperature of the prepared water was adjusted to
25.0°C. Prepared water came from the same prepara-
tion tank only once per day.

Fish holding tank origin was randomized such that
fish of the same sex and from the same holding tank
did not meet the same conditions (water type, prepara-
tion tank, experimental tank). Four experimental fish
were carefully captured with a hand net and put into a
15.5 × 9 × 11 cm transportation box each filled with 1 l
of tap water. Each fish was then, alternately for the
2 treatments, introduced into its experimental tank.
Subsequently, the behaviour of all 4 fish was recorded
for 2 h. Per treatment group 6 males and 6 females
were tested. Each fish was only used once, resulting in
24 experiments.

Body measurements and behavioural analysis. Sub-
sequent to each experiment, fish standard length (SL:
body size from snout to the beginning of the tail fin)
was measured to the nearest millimetre, and body
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mass (M) was determined (LC 221S, Sartorius). The
body condition factor (CF) was calculated after Bolger
& Connolly (1989) such that:

CF = 100 × M × (SL3)–1

Recordings of the experiments were analyzed by
tracking the fish with the software BioObserve. Track
length was used as an operational variable to infer
activity. For every fish, the total track length covered in
2 h was calculated. In order to analyze activity changes
during the experiment, track length was also com-
puted in 1 min intervals over the duration of the exper-
iment.

Water analysis. Furthermore, chemical water para-
meters were obtained from 6 different instances of
either treatment. The pH and electrical conductivity
(EC) values were obtained with a digital meter (HI
98129, Hanna Instruments, measurement errors: pH
0.05 units, EC 2%). Alkanity (carbonate hardness) (kH,
measurement error 0.009 mmol l–1), total or general
hardness (gH, measurement error 0.004 mmol l–1),
nitrate (NO3

–, measurement error 2.5 mg l–1), nitrite
(NO2

–, measurement error 0.005 mg l–1) and ammoniac
(NH3/NH4

+, measurement error 0.025 mg l–1) values
were identified using drip tests (JBL). Also, the amount
of diluted oxygen (O2) was obtained twice in a 45 min
interval per water analysis using an oxygen probe
(OxiCal-SL, WTW, measurement error 0.5%) con-
nected to a digital meter (OxiCal 842, WTW). The val-
ues of both oxygen measurements were averaged for
statistical analysis. Carbon dioxide saturation (CO2)
was calculated based on the pH and kH values using
the formula:

CO2 (mg l–1) = kH (mmol l–1) × 44 × 10(pK – pH)

with a calculated mean pK of 6.321 by incorporating
temperature and EC according to Norm DIN 38404-10
(1995).

Statistical analyses. All statistics were computed
using the R 2.5.1 statistical package. In order to exam-
ine whether the treatment (i.e. tap water or sand-
treated water) influenced fish activity, linear models
(LM) were conducted. Tests of statistical significance
were based on likelihood ratios (LRT). Hence, degrees
of freedom always differed by 1. Non-significant fac-
tors and interactions were removed from the analysis
(Engqvist 2005). The total track length the test fish cov-
ered was entered as a dependent variable, and ‘treat-
ment’ and ‘sex’, as fixed factors. Furthermore, the inter-
action between ‘treatment’ and ‘sex’ was included in
order to test whether males and females responded
 differently to the treatment. For analyzing activity
changes over time, for each of the 24 experiments
Spearman rank correlation tests between track length
per minute and time were conducted. The correlation

coefficients obtained were entered in a LM as the
dependent variable, and ‘treatment’ and ‘sex’, as fixed
factors. To examine sex-specific differences, the inter-
action between ‘treatment’ and ‘sex’ was included.
Parametric tests were applied only when the data were
normally distributed according to the Shapiro-Wilk
test. When data were not normally distributed, non-
parametric tests were applied. Test probabilities are
2-tailed throughout.

RESULTS

The mean (±SD) total track length covered by Pelvi-
cachromis taeniatus in the sand-treated water group
was almost twice as high as that in the control group
(LRT, F = 4.991, df = 1, p = 0.036; Fig. 1). This differ-
ence was independent of sex (interaction sex × treat-
ment, LRT, F = 1.032, df = 1, p = 0.332). Also, the sexes
did not cover significantly different total distances
(LRT, F = 0.207, df = 1, p = 0.654). Activity changes over
experimental time were significantly explained by the
interaction between treatment and sex (LRT, F = 4.595,
df = 1, p = 0.045; Fig. 2). Female activity did not signifi-
cantly change over time in either treatment (tap water:
LM, intercept, t = 1.476, df = 5, p = 0.200; sand-treated
water: LM, intercept, t = 1.518, df = 5, p = 0.189; Fig. 2),
nor did male activity in tap water (LM, intercept, t =
1.485, df = 5, p = 0.198; Fig. 2). However, males signifi-
cantly increased their activity over time in sand-
treated water (LM, intercept, t = 5.805, df = 5, p = 0.002;
Fig. 2). Body measures did not differ significantly

37

5

0

T
ra

c
k
 l
e
n

g
th

 (
m

)

Tap water Sand water

*

10

15

20

25

Fig. 1. Pelvicachromis taeniatus. Mean (±SD) total track
length the fish covered during 2 h in tap water (white) and
sand-treated water (hatched). The asterisk above the bars 
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between the fish in the sand-treated water and control
treatments (standard length: mean ± SD: 4.91 ± 0.86 vs.
4.96 ± 0.92 cm, independent Wilcoxon test, W = 75.5,
p = 0.862; body mass: mean ± SD: 3.01 ± 1.21 vs. 3.16 ±
1.43 g, independent Wilcoxon test, W = 74, p = 0.932;
condition factor: mean ± SD: 2.51 ± 0.43 vs. 2.50 ± 0.43,
independent t-test, t = –0.035, df = 22, p = 0.973). Also,
activity (i.e. total track length) was not significantly cor-
related with standard length (Spearman rank correla-
tion, r = –0.203, n = 24, p = 0.341), body mass (Spear-
man rank correlation, r = –0.123, n = 24, p = 0.564), or
condition factor (Pearson correlation, r = 0.083, n = 24,
p = 0.471). The physical water parameters were not sig-
nificantly different between treatments (Table 1).

DISCUSSION

Generally, the activity of Pelvicachromis taeniatus
was positively influenced by substrate-induced alter-
ation of tap water. Fish were significantly more active
in sand-treated water than in tap water independent of
sex. Variation in body size, mass, or condition did not
significantly correlate with activity, which contrasts to
some other studies (Budaev et al. 1999, Reebs 2002).
Significant differences between the sexes were found
in activity changes over time. Males started with a
somewhat lower activity than females, especially com-
pared to females in sand-treated water. The males in
the sand-treated water significantly increased their
activity over time, whereas those in the control group
did not. In the case of females, neither group devel-
oped significantly higher activity over time. The differ-
ent responses of the sexes may be not surprising,
because substrate is a resource more relevant for P. tae-
niatus males, which construct sand piles in front of
their breeding caves (Baldauf 2006). Also, recent re -
search has determined that in other cichlid species pre-
dominantly males use substrate for nest building (Men-
donça et al. 2010, Schaedelin & Taborsky 2010). Sexes
may also differ in learning ability and thereby in activ-
ity (Sneddon 2003). Another explanation is that males
might be the choosier sex in P. taeniatus (Baldauf et al.
2009) and thus be more cautious.

Substrate treatment did not alter any measured chem-
ical water parameters significantly. Also, microorgan-
isms could not be detected in water samples, whereas
microscopically small pieces of organic particles were
present in higher quantity after substrate treatment
(D.M., personal microscopic observations, magnifica-
tion 400×). The results suggest that the difference in ac-
tivity is not due to an effect of substrate on water-
 quality parameters (Broom & Johnson 1993), but rather

implies that fish recognized the chemi-
cal trace of the substrate.  Furthermore,
it is likely that this odour is mediated
through microscopically small organic
particles. In other experiments, differ-
ent authors found in creased fish activ-
ity in tanks containing substrate (Web-
ster & Hart 2004, Galhardo et al. 2009).
Thus, recognition of substrate odours in
the water might similarly influence fish
welfare positively even without actual
substrate interaction. Since the same
type of substrate was available in the
holding tanks, one may assume that the
substrate odours represented a familiar
environment (Gerlach et al. 2007).

The present research showed that
activity of the cichlid Pelvicachromis
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Fig. 2. Pelvicachromis taeniatus. Track length per successive
10 min intervals by males (squares, black regression lines) and
females (circles, grey regression lines) in tap water (open sym-
bols, dashed regression lines) and sand-treated water (filled
symbols, solid regression lines) during the 2 h experiment

Parameter Tap water Substrate-treated Test p-value
water statistic

pH 8.37 ± 0.05 8.36 ± 0.07 W = 18 >0.999
Conductivity (µS) 369.17 ± 25.310 370.16 ± 25.470 t = 0.068 0.947
kH (mmol l–1) 1.53 ± 0.19 1.59 ± 0.26 t = 0.452 0.662
gH (mmol l–1) 1.03 ± 0.12 1.03 ± 0.12 W = 11 >0.999
NO3

– (mg l–1) 5 ± 0 5 ± 0 – –
NO2

– (mg l–1) <0.01 <0.01 – –
NH3/NH4

+ (mg l–1) <0.05 <0.05 – –
O2 (mg l–1) 8.34 ± 0.33 8.20 ± 0.26 t = –0.791 0.448
CO2 (mg l–1) 0.65 ± 0.22 0.60 ± 0.10 W = 18.5 >0.999

Table 1. Comparison of water parameters from sand-treated water (n = 6) and tap
water (n = 6). Shown are means (±SD), test statistics and p-values. Nitrite (NO2

–)
and ammoniac (NH3/NH4

+) concentrations were below measurement thresholds
in all cases, and thus, statistics could not be performed. The nitrate (NO3

–) values
were identical in each measurement and, thus, were not statistically analyzed. 

kH: carbonate hardness; gH: general hardness



Meuthen et al.: Sand-treated water enhances fish activity

taeniatus was positively influenced by using water that
had been pre-treated with sand. Providing olfactory
enrichment by using this simple method may be
widely applicable in the study of different fish species
that inhabit sandy habitats in order to facilitate
acclimatization to minimalistic experimental setups.
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