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Sperm quality but not relatedness predicts sperm
competition success in threespine sticklebacks
(Gasterosteus aculeatus)
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Abstract

Background: Mating between close relatives often leads to a reduction of an individual’s fitness, due to an
increased expression of deleterious alleles. Thus, in many animal taxa pre- as well as postcopulatory inbreeding
avoidance mechanisms have evolved. An increased risk of inbreeding and hence a loss of genetic variation may
occur during founder events as in most cases only few individuals establish a new population. The threespine
stickleback (Gasterosteus aculeatus) is a small externally fertilizing fish species subject to strong sperm competition.
Sticklebacks inhabit both marine and freshwater environments and anadromous populations have repeatedly
established new genetically less diverse freshwater populations. Previous studies showed that anadromous sticklebacks
strongly suffer from inbreeding depression and when given the choice females prefer to mate with unrelated males.

Results: The present study aimed to address whether there exists a postcopulatory inbreeding avoidance mechanism
solely based on sperm-egg interactions in sperm competition experiments. We used F1 individuals that originated
either from a large, genetically heterogeneous anadromous population or from a small, genetically less diverse
freshwater population. For each population, eggs of two different females were in vitro fertilized by the same two
males’ sperm in a paired study design. In the main experiment one male was the female’s full-sib brother and in
the control experiment all individuals were unrelated. The results revealed that fertilization success was independent of
relatedness in both populations suggesting a general lack of a postcopulatory inbreeding avoidance mechanism.
Instead, male quality (i.e. sperm morphology) predicted paternity success during competitive fertilization trials.

Conclusion: In sticklebacks, there is no evidence for postcopulatory inbreeding avoidance. Sperm morphology
predicted paternity instead, thus sperm quality traits are under strong sexual selection, presumably driven by the high
risk of sperm competition under natural conditions.

Keywords: Cryptic female choice, Fish, Paternity, Inbreeding avoidance, Inbreeding depression, Mate choice, Sexual
selection, Sperm-egg interaction
Background
In many animal species a reduction of heterozygosity
due to inbreeding often results in detrimental conse-
quences for an individual’s fitness (termed “inbreeding
depression”, [1]), for example by depressing a male’s
sperm competitiveness ([2], but see [3,4]). Beyond that
inbreeding may also affect population performance (see
[5] for details) and especially small populations with low
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genetic diversity face an increased risk of becoming
extinct (see [6-9] and citations therein).
Precopulatory inbreeding avoidance mechanisms, such

as sex-biased dispersal, delayed maturation, mate choice
or extra-pair copulations, are well studied (see [10] for
an overview). In species in which relatives are likely to
encounter each other during adulthood, the ability to
recognize kin is a prerequisite to avoid incestuous mat-
ings, which was described for various taxa [11-14]. How-
ever, if it is not possible to avoid incestuous matings,
postcopulatory inbreeding avoidance mechanisms may
have been alternatively developed. In some internally
fertilizing species, for example, multiply-mated females
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avoided the negative costs of inbreeding by cryptically
favoring the sperm of unrelated males [15-24], but see
[25-29]. Postcopulatory preferences for genetically simi-
lar mating partners have been documented in the Arctic
charr (Salvelinus alpinus) [30], the Atlantic salmon
(Salmo salar) [31] and in the Peron’s tree frog (Litoria
peronii) [32]. These studies stress that a high possibil-
ity of hybridization in their study species accounts for
the observed results [30-32]. However, it remains note-
worthy that sometimes mating with a close relative is
actively preferred and may even increase an individual’s
fitness [33-36]. This is in accordance with recent theory,
as incestuous matings provide a possibility to spread genes
identical by descent [37].
The threespine stickleback (Gasterosteus aculeatus) is

a small externally fertilizing fish species that inhabits
marine, brackish as well as freshwater habitats [38].
Postglacially, anadromous populations have frequently
established new freshwater populations, presumably
consisting of only a few founder individuals (see [39]
for details and [40] for an example of recent colonization
events in Switzerland). Due to founder effects and limited
population size freshwater populations often show a re-
duced genetic diversity (e.g. [41,42]), increasing their
probability of becoming extinct [43]. This follows the
more general pattern that the allelic diversity among fishes
is higher in marine populations as compared to freshwater
populations (see [44]).
Recent studies on the effects of inbreeding on life his-

tory traits exclusively examined stickleback individuals
from a large, genetically heterogeneous population from
Texel, the Netherlands [41], revealing that they are
prone to inbreeding depression. In detail, incestuous
matings lowered fertilization success, hatching rate and
survival of both juveniles and adults [45]. In addition, at
adult stage inbred individuals had more asymmetric pec-
toral fins [46] and showed an altered shoaling behavior
toward kin [47]. Moreover, there is strong evidence for a
precopulatory inbreeding avoidance mechanism in this
population as in choice experiments, female sticklebacks
rejected their brothers as mating partners [48,49], and
inbred females had a stronger preference for symmet-
rical males than outbred females [50]. However, inbreed-
ing did not affect adult males’ breeding coloration or
testis and sperm traits [45,51]. This might be best ex-
plained by the fact that it is difficult to detect the nega-
tive consequences of inbreeding, when homozygous
individuals suffer from lethal mutations early in life and
as a result a low number of inbred individuals reaches
the reproductive phase (see [45,51] for details).
In general, the frequency of sneaking (i.e. the stealing

of fertilizations) and thus the risk of sperm competition
is known to be high in sticklebacks (e.g. [52]) so that
precopulatory inbreeding avoidance (see [48,49]) might
not always be effective. Besides, given the severe conse-
quences of incestuous matings (e.g. [45]) the present
study aimed to investigate whether there is a postcopula-
tory inbreeding avoidance mechanism solely based on
sperm-egg interactions in sperm competition experiments.
Therefore, we used stickleback individuals originating
from the same large anadromous population as described
before [41] and from a small resident freshwater popula-
tion (Euskirchen, Germany). Generally, we expected dif-
ferent selective constraints for individuals originating
from a small, genetically less diverse compared to a large,
genetically heterogeneous population as supported by a
recent theoretical study (see [53]). In detail, a postcopula-
tory inbreeding avoidance mechanism might be less rele-
vant in small populations due to purging of deleterious
alleles after repeated inbreeding (e.g. [54,55]). Alterna-
tively, inbreeding is known to enhance the extinction risk
in small genetically less diverse populations (see [56]), sug-
gesting that there might be a stronger selection for a post-
copulatory inbreeding avoidance mechanism (e.g. [19,57]).
Apart from genetic compatibility [58], sperm morph-

ology, such as sperm size, is known to be a good proxy
of reproductive performance in several animal species
(reviewed in [59,60]). However, throughout the literature
the relationship between sperm size and fertilization suc-
cess at the intraspecific level is inconsistent: negative
(e.g. [61,62]), positive (e.g. [63,64]) or no (e.g. [65,66]) re-
lationships have been reported. Based on the fact that
there is huge between- and within-male variation in
sperm morphology in the threespine stickleback (see
[67]), we additionally addressed the variation of sperm
size in relation to fertilization success in the present
study. In externally fertilizing species, fertilization rate is
not confounded by characteristics of the female repro-
ductive tract.

Methods
Ethics
The study conforms to the Association for the Study of
Animal Behaviour Guidelines for the use of animals in re-
search as well as to the legal requirements of Germany.
We had the permission to catch the parental generation of
the F1 sticklebacks used in this study at the Euskirchen
field site (local forestry department, Euskirchen, Germany).
In addition, the parental generation of the F1 sticklebacks
used in this study from the anadromous population (Texel,
the Netherlands) was purchased from a commercial fisher-
man, who has the permission to catch the fish. No further
licenses were needed.

Experimental subjects
Test fish from the small, genetically less diverse fresh-
water population used in this study originated from the
F1 generation of randomly crossed wild-caught fish
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(2007, Euskirchen, Germany). Parents were only used
once to avoid pseudoreplication. Offspring hatched be-
tween September 2 and October 11, 2007. During devel-
opment, all fish were housed in an air-conditioned room
under standardized laboratory short-day conditions (17 ±
1°C, day length 8L:16D). Juveniles were fed with Artemia
nauplii and later on defrosted red mosquito larvae
(Chironomus spec.). To stimulate reproductive behavior
the light-regime was changed to long-day summer con-
ditions (17 ± 1°C, day length 16L:8D) on June 6, 2008.
The standardized in vitro fertilization trials were con-
ducted between June 19 and July 29, 2008.
Test fish from the large, genetically heterogeneous an-

adromous population (Texel, the Netherlands) used in
this study were also the F1 generation of randomly
crossed wild-caught fish (bred in 2008). Breeding and
rearing conditions of these individuals followed a similar
standardized protocol as for the freshwater population,
which is described in detail in Mehlis & Bakker [68]. In
vitro fertilization trials took place between June 29 and
July 23, 2009.
To validate that the F1 freshwater fish used in this

study were genetically less diverse in comparison to the
F1 anadromous fish we genotyped 34 randomly chosen
unrelated individuals (17 from each population) at nine
microsatellite loci ([41,69], see also Additional file 1).
The results showed that the mean number of alleles per
locus (A) was approximately three times higher for the
anadromous population (A = 13.89) compared to the
freshwater population (A = 4.89) (Wilcoxon signed rank
test: N = 9, z = −2.670, p = 0.008; Table 1). However, both
populations did not differ significantly from Hardy-
Weinberg equilibrium (both p ≥ 0.159; Table 1) and in-
breeding coefficient values were close to zero in both
populations (freshwater: FIS = 0.033; anadromous: FIS =
0.035; Table 1), suggesting random mating patterns
under natural conditions.

In vitro fertilization trials
For both populations, in vitro fertilization trials (Nfreshwater =
17, Nanadromous = 22) were conducted following an identical
protocol. In detail, an in vitro fertilization trial consisted of
two sub-trials in which sperm from the same two males
were allowed to compete against each other for egg
fertilization. For each sub-trial a different egg-donating
Table 1 Population structure analysis

Population N Loci A He

freshwater 17 9 4.89 0.6686

anadromous 17 9 13.89 0.9063

Shown is a comparison of the variation of nine microsatellite markers based on 34
17 F1 fish from the anadromous stickleback population) (see [41,69], and Additiona
alleles per locus, He: expected heterozygosity, Ho: observed heterozygosity, FIS: inbr
proportions under Hardy-Weinberg equilibrium (HWE) (given are p-values, χ2 and d
female was used (see Figure 1). In one sub-trial (called
main experiment) one of the two males was the female’s
full-sib brother. In the other sub-trial (called control ex-
periment) the female was unrelated to both males (see
also Figure 1). Males are therefore referred to as “brother”
(between quotation marks as brother is only valid for the
main experiment) and non-sib male from now on.
Prior to in vitro fertilization trials randomly chosen

males were isolated in single tanks (30 cm length ×
20 cm width × 20 cm height) under summer conditions
(see above), each equipped with a sand-filled Petri dish
(Ø 9 cm) and 2 g of nest-building material (Vesicularia
dubyana). Females used in the main experiments origi-
nated from the same laboratory-bred F1 generations (see
above) whereas those used in the control experiments
were wild-caught. This applies to the experiments with
both the anadromous and the freshwater population.
Wild-caught fish were trapped on March 27, 2008
(freshwater) and on April 3, 2009 (anadromous). All
wild-caught fish were kept in mixed-sex groups of about
400–500 individuals in large outdoor tanks (750 l) with
a constant supply of tap-water (3 l min−1) and were daily
fed with Chironomus spec. In both stickleback popula-
tions, reproduction takes place one year after hatching.
Accordingly, the frequency distribution of fish lengths is
single-peaked (MM unpublished observation) revealing
that wild-caught females used in the control experiment
were of the same age as F1 individuals.
Only sperm of size-matched (± 2 mm), nest-holding

males were allowed to compete against each other for
egg fertilization (for details concerning the experimental
design see Figure 1). First, one male of the pair was
killed quickly by decapitation in order to dissect the tes-
tes as sperm stripping is not possible in sticklebacks (the
only exception in [70]). Directly before decapitation fish
were anesthetized with a blow to the head, which is the
quickest method (see also [71]). After dissection, testes
were separately stored in 200 μl of a non-activating
medium (for mixture see [72]) for later in vitro fertilization
(sperm from the left testis) and sperm morphology deter-
mination (sperm from the right testis). The same was done
for the second male. To avoid sequence effects “brother”
and non-sib males were killed in random order. Directly
thereafter sperm number was determined for both males as
described in Mehlis & Bakker [68] to ensure that equal
Ho FIS pHWE χ2HWE dfHWE

0.6471 0.033 0.559 16.479 18

0.8758 0.035 0.159 23.868 18

randomly chosen unrelated individuals (17 F1 fish from the freshwater and
l file 1 for further details]. N: number of individuals typed, A: mean number of
eeding coefficient, and results of chi-square tests for deviation from expected
egrees of freedom, df).
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Figure 1 Experimental design. In each trial two males and two
females were used. In the main experiment one male (“brother”) was
related to the female (“sister”), whereas in the control experiment
both males (“brother” and non-sib male) were unrelated to the
female (unrelated female) (the number of fertilization trials consisting
of two sub-trials each were Nfreshwater = 17; Nanadromous = 22).
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proportions of males’ sperm (125,000 sperm per egg and
male) were used during the fertilization process. By keeping
the sperm number constant we controlled for a potential
influence of sperm quantity as suggested by theory [73,74].
Immediately after both males’ testes had been dissected
and sperm number had been quantified, one randomly
chosen gravid female (either a “sister” of one of the males
(main experiment) or a female unrelated to both males
(control experiment), see Figure 1) was stripped and 50
eggs were counted and placed in a small glass Petri dish
that already contained 1 ml of tap water. Using a pipette
the sperm mixture (containing 125,000 sperm per egg of
the “brother” and 125,000 sperm per egg of the non-sib
male) was distributed over the eggs. The same was done
with the other females’ eggs. Again, “sisters” and unre-
lated females were stripped in random order to avoid
sequence effects.
One hour later, the fertilization process was stopped

by adding sparkling table water over the clutches; a
method which has been shown not to harm the eggs but
to quickly kill the sperm [75]. Eggs were placed in a
small aerated container (1 liter) and 24 h later fertilization
rate was checked [76] using a binocular (Leica S8AP0), be-
fore all eggs were stored in 99.8% ethanol at −18°C for
subsequent paternity analyses. Shortly before storage, ten
randomly chosen fertilized eggs were weighed to the near-
est milligram to determine the average egg mass as an in-
dicator of female quality [77]. Females that participated in
an in vitro fertilization sub-trial were marked by cutting
the tip of a spine before they were returned to their
holding tank in order to avoid repeated use and thus
pseudoreplication. The females’ spines and tissue sam-
ples from the pectoral fin of the males were separately
stored in 99.8% ethanol at −18°C for subsequent pater-
nity analyses (see below).
Sperm morphology variables (head length (including

mid-piece) (hl) and tail length (tl)) were determined by
scanning electron microscopy (see [51,68] for details).
Sperm morphology variables were based on 10.56 ± 3.74
(mean ± SD) sperm per male for the freshwater popula-
tion and on 20.57 ± 1.99 (mean ± SD) sperm per male
for the anadromous population.

Paternity analyses
Paternity analyses were done using four polymorphic
microsatellite markers ([41,69], see also Additional file 2).
DNA-samples of parents and eggs were extracted via Che-
lex (Bio-Rad, after [78]). The tailed primer method [79]
was used for subsequent PCR (see Additional file 3 for de-
tails) and PCR-products were run on a CEQ 8800 Genetic
Analysis System (Beckman Coulter) and analyzed via
GenomeLabTM GeXP (version10.2). For both sub-trials
(i.e. main as well as the control experiment) sub-samples
of 30 eggs were genotyped. On average 29.06 ± 1.59
(mean ± SD) eggs per sub-trial could be successfully
assigned to one father for the freshwater population and
28.91 ± 2.37 (mean ± SD) for the anadromous population,
respectively. In total 2260 eggs were genotyped (fresh-
water: 988 eggs; anadromous: 1272 eggs).

Statistical analyses
Non-parametric statistics were used as data signifi-
cantly deviated from normal distribution according to
Kolmogorov-Smirnov tests with Lilliefors correction.
Data were analyzed in SPSS 15.0. Test probabilities are
two-tailed throughout. Linear mixed-effect models
were fitted using the ‘lme’ function in the “nlme” li-
brary of the R 3.0.2 statistical package. The differences
in fertilization success (“brother” minus non-sib male)
were calculated for each population and used as
dependent variable, the sub-trial (main or control ex-
periment) was included as explanatory variable and
trial number was defined as random factor and never
removed to control for the paired study design.
An additional linear mixed-effect model was run to

elucidate whether any sperm morphology trait was re-
lated to fertilization success. Therefore, differences in
fertilization success (“brother” minus non-sib male) were
again used as dependent variable and averaged values for
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Figure 2 Results of the paternity analyses. Percentage of fertilized
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males’ sperm tail length respectively the sperm head to
tail length ratio (hl/tl, see [80]) were separately included
as explanatory variable. Moreover, two different males as
well as two females were used for one in vitro fertilization
trial. Thus, males’ body size and females’ egg mass were
included as explanatory variables and never removed to
control for potential differences in males’ phenotype and
females’ egg quality. Additionally to the trial number, the
study population was defined as random factor. Both
random factors were left in the model to control for the
paired study design as well as for potential population
differences (see Additional file 4 for an overview of all
fitted models).
Tests of significance were based on likelihood-ratio

tests and in all models explanatory variables were step-
wise removed in the order of statistical relevance. The
residuals of the best explaining models did not signifi-
cantly deviate from normal distributions according to
Kolmogorov-Smirnov tests.

Results
The proportion of fertilized eggs did not differ signifi-
cantly between the main and the control experiment
(Wilcoxon signed rank test: Nfreshwater = 17, z = −1.436,
p = 0.151; Nanadromous = 22, z = −0.714, p = 0.475). In
addition, the relative number of fertilized eggs (“brother”
minus non-sib male) did not differ significantly between
main and control experiment; neither in the freshwater
population (“lme”, Nfreshwater = 17, χ2 = 0.148, p = 0.700;
Figure 2) nor in the anadromous population (“lme”,
Nanadromous = 22, χ2 = 0.229, p = 0.632; Figure 2), indicating
that no postcopulatory inbreeding avoidance mechanism
exists in both populations. However, males that were suc-
cessful in the control experiment were also the winner in
the main experiment and vice versa (Pearson correlation:
Nfreshwater = 17, rP = 0.961, p < 0.001; Nanadromous = 22, rP =
0.950, p < 0.001; Figure 3).
As in both populations postcopulatory inbreeding

avoidance was absent, data were pooled for further ana-
lyses. The results showed that competitive fertilization
success was significantly predicted by sperm quality (tail
length: “lme”, N = 39, χ2 = 4.909, p = 0.027; head to tail
length ratio: “lme”, N = 39, χ2 = 4.398, p = 0.036; Table 2).
Fertilization success was significantly negatively corre-
lated with tail length (Spearman rank correlation: N =
39, rS = −0.349, p = 0.030) and significantly positively
correlated with head to tail length ratio (Spearman rank
correlation: N = 39, rS = 0.319, p = 0.048; Figure 4).

Discussion
Both in a genetically heterogeneous, anadromous stickle-
back population and in a genetically impoverished, fresh-
water stickleback population, we found no evidence for
a postcopulatory inbreeding avoidance mechanism. Males
related and unrelated to the female, had on average equal
paternity chances in sperm competition experiments. Pa-
ternity was related to the size of a male’s sperm instead.
Previous studies on sticklebacks of the present anadro-

mous population have shown a precopulatory inbreeding
avoidance mechanism as females preferred to mate with



Table 2 Sperm morphology traits in relation to
fertilization success

Dependent variable

Competitive fertilization success

Explanatory variable χ2 p-value

Tail length 4.909 0.027

Head to tail length ratio 4.398 0.036

Both sperm tail length and head to tail length ratio significantly explain
fertilization success in the in vitro sperm competition trials with fish from a
freshwater and an anadromous stickleback population. Given are p-values
and χ2. See text for details.
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unrelated males [48,49]. In addition, males from the an-
adromous population released fewer sperm during inces-
tuous matings (MM, LK Hilke and TCMB unpublished
data). Hence, at least in the anadromous population both
sexes seem to avoid the severe consequences of inbreed-
ing at the precopulatory stage, which may explain the
lack of a postcopulatory inbreeding avoidance mechan-
ism as observed in the present study (see [81] for a com-
parable result). Whether this also applies to individuals
originating from the small, genetically less diverse fresh-
water population is unknown. Indeed, in small popula-
tions the risk to mate with a partner by chance that
carries genes identical by descent is obviously higher. By
using in vitro fertilization techniques we avoided con-
founding influences of precopulatory differences in be-
havior and were thus able to investigate the existence of
an inbreeding avoidance mechanism exclusively based
on the postcopulatory level. Irrespective of population
size and thus contrary to our expectations, we did not
find any evidence for a postcopulatory inbreeding avoid-
ance mechanism in the present study. However, previous
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Figure 4 Sperm morphology in relation to fertilization success.
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studies showed that in guppies (Poecilia reticulata) and
in lake trouts (Salvelinus namaycush) sperm swam faster
in ovarian fluid of unrelated females indicating fitness
benefits (see [82,83]). Nevertheless, a postcopulatory
inbreeding avoidance exclusively based on sperm-egg
interactions seems to be absent in sticklebacks.
An individual’s ability to select a mating partner that

carries good or compatible genes could lead to indirect
genetic benefits [84-86]. In detail, selection for “good
genes” (additive genetic effects for increased survival)
leads to directional selection, i.e. each female within a
population should mate with males that carry these good
genes. Selection for compatible genes (non-additive gen-
etic variation) does not result in directional selection.
For example, a high degree of relatedness between mat-
ing partners might represent one reason of genetic in-
compatibility [87,88]. In the present study the success of
a male in the competitive fertilization trials was exclusively
based on sperm quality (in terms of sperm morphology as
we were not able to measure sperm velocity) in both pop-
ulations. Hence, the results suggest a directional selection
for a “superior” male phenotype independent of genetic
incompatibility (see [27] for a comparable result in mal-
lards). A recent study by Eizaguirre et al. [89] supported
the good gene hypothesis of sexual selection in stickle-
backs. In semi-natural enclosures, females preferred to
mate with males with a specific MHC-haplotype, which
was related to indirect fitness benefits as these males were
larger and had a higher resistance to a common parasite
(Gyrodactylus spec.) [89].
Between-male variation in stickleback sperm design

(see also [67]) mainly consists of variation in sperm tail
length, as it accounts for up to 90% of the total sperm
length. Sperm with a longer tail (i.e. smaller head to tail
length ratio, defined after [80]) swim in a more linear
path and sperm that swim in a linear path were shown
to swim faster [90], suggesting that these sperm might
encounter an unfertilized egg more rapidly (see also
[91]). In sperm competition, one would thus expect an
advantage for longer sperm. Counterintuitively, in the
present study relatively shorter sperm (and sperm with a
relatively large head to tail length ratio) won the race for
egg fertilization during competitive in vitro fertilization
trials. A recent in vitro study by Bakker et al. [67] provides
a convincing explanation. By experimentally manipulating
fertilization duration Bakker et al. [67] showed that sperm
with longer tails (i.e. relatively small head to tail length
ratio) fertilize faster when the fertilization process was
stopped 60 seconds after the start of the sperm release.
This resulted in a positive correlation between sperm size
and fertilization success whereas a negative correlation
was found when the fertilization process was stopped after
600 seconds [67]. Thus, sperm size seems to be traded off
against sperm longevity in our study species (see [67] for
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details). Additionally, in sticklebacks, complete clutch
fertilization takes atypically long for an externally fertiliz-
ing species (up to 10 min, [75]) and the sperm motility
period is prolonged by the presence of ovarian fluid (up to
several hours, [92]).
To ensure high fertilization rates under laboratory

conditions (on average 98% for the anadromous popula-
tion and 96% for the freshwater population) we decided
to stop the fertilization process after 60 minutes in the
present study. This might account for the observed
negative correlation between sperm size and fertilization
success (see also [67] for details). As mentioned above,
the relationship between sperm size and fertilization suc-
cess is ambiguous, showing no general pattern: negative
(e.g. [61,62]), positive (e.g. [63,64]) or absent (e.g. [65,66]).
Generally, this topic is controversial and even within the
same species the relationship between sperm morphology
traits and sperm velocity in particular seems to be dy-
namic and influenced by many factors. Rick et al. [93],
for example, showed that in sticklebacks, sperm velocity
is negatively affected by increased levels of ambient UV
light whereas sperm morphology traits remain unaffected.

Conclusion
There is no evidence for a postcopulatory inbreeding
avoidance mechanism in our study species, irrespective
of population size. Instead, sperm quality traits predicted
paternity success during competitive fertilization trials,
indicating that this trait is under strong sexual selection,
presumably forced by the high risk of sperm competition
under natural conditions.
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Additional file 1 List and PCR conditions of the nine microsatellite markers [1, 2] used 1 

in the population structure analysis. 2 

Locus  GenBank 
accession no. dye label tail tail-sequence 5'- 3‘ 

GAC1097PBBE AJ010352 D2 (black) M13 TGTAAAACGACGGCCAGT 
GAC1116PBBE AJ010353 D3 (green) T7 TAATACGACTCACTATAG 
GAC1125PBBE AJ010354 D2 (black) M13 TGTAAAACGACGGCCAGT 
GAC3133PBBE AJ010356 D4 (blue) Sp6 GATTTAGGTGACACTAT 
GAC4170PBBE AJ010357 D4 (blue) Sp6 GATTTAGGTGACACTAT 
GAC4174PBBE AJ010358 D3 (green) T7 TAATACGACTCACTATAG 
GAC5196PBBE AJ010359 D3 (green) T7 TAATACGACTCACTATAG 
GAC7010PBBE AJ311863 D2 (black) M13 TGTAAAACGACGGCCAGT 
GAC7033PBBE AJ010360 D4 (blue) M13 TGTAAAACGACGGCCAGT 

 3 
PCR program: 
GAC1097PBBE, GAC1125PBBE, 
GAC4170PBBE, GAC5196PBBE 

 PCR program: 
GAC1116PBBE, GAC3133PBBE, 
GAC4174PBBE, GAC7010PBBE 
GAC7033PBBE 

preheating 94 °C 15 min.  preheating 94 °C 15 min. 
30 cycles   30 cycles  
denaturing 94 °C 60 sec.  denaturing 94 °C 60 sec. 
annealing 58 °C 45 sec.  annealing 56 °C 45 sec. 
elongating 72 °C 60 sec.  elongating 72 °C 60 sec. 
8 cycles   8 cycles  
denaturing 94 °C 60 sec.  denaturing 94 °C 60 sec. 
annealing 53 °C 45 sec.  annealing 53 °C 45 sec. 
elongating 72 °C 60 sec.  elongating 72 °C 60 sec. 
final extension cycle 72 °C 30 min.  final extension cycle 72 °C 30 min. 

Tissue samples were extracted via Chelex [Bio-Rad, 3]. The tailed primer method [4] was 4 

used for subsequent PCR and PCR-products were run on a CEQ 8800 (Beckman Coulter) and 5 

analyzed via GenomeLabTM GeXP (version10.2). 6 

To estimate genetic diversity 17 unrelated F1-descendants of wild-caught fish of each of 7 

the two populations used in the fertilization trials were genotyped for the nine microsatellite 8 

loci given above. Number of alleles (A), observed heterozygosity (Ho), and Nei’s unbiased 9 

gene diversity [He, 5] were calculated using the Microsatellite Toolkit for MS Excel [6]. The 10 

web-based version of Genepop 4.2 [7, http://genepop.curtin.edu.au] was used to calculate the 11 

inbreeding coefficient FIS [after 8] and deviations from Hardy-Weinberg equilibrium [9, 12 

Markov chain Monte Carlo simulation with dememorization 5000, batches 500 and iterations 13 

per batch 5000). 14 
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Microsatellite markers for the three-spined stickleback (Gasterosteus aculeatus L.) 16 

and their applicability in a freshwater and an anadromous population. Conserv 17 

Genet 2002, 3:79-81. 18 

2. Largiadèr CR, Fries V, Kobler B, Bakker TCM: Isolation and characterization of 19 

microsatellite loci from the three-spined stickleback (Gasterosteus aculeatus L.). 20 

Mol Ecol 1999, 8:342-344. 21 

3. Estoup A, Largiadèr CR, Perrot E, Chourrout D: Rapid one-tube DNA extraction for 22 

reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol 23 
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4. Schuelke M: An economic method for the fluorescent labeling of PCR fragments. 25 
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8. Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population-32 
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9. Guo SW, Thompson EA: Performing the exact test of Hardy-Weinberg proportion 34 
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mailto:mmehlis@evolution.uni-bonn.de�


Marion Mehlis1,*, Anna K. Rahn1 and Theo C. M. Bakker1 Sperm quality but not relatedness predicts sperm competition success in 
threespine sticklebacks (Gasterosteus aculeatus). BMC Evolutionary Biology 
1 Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany 
* Corresponding author e-mail: mmehlis@evolution.uni-bonn.de 

Additional file 2 Details of the four microsatellite markers [1, 2] that were used for the paternity 1 

analyses. 2 

Locus  GenBank 
accession no. dye label tail tail-sequence 5'- 3‘ 

GAC1116PBBE AJ010353 D3 (green) T7 TAATACGACTCACTATAG 

GAC2142PBBE AJ311857 D4 (blue) Sp6 GATTTAGGTGACACTAT 

GAC4174PBBE AJ010358 D3 (green) T7 TAATACGACTCACTATAG 

GAC7033PBBE AJ010360 D4 (blue) M13 TGTAAAACGACGGCCAGT 
 3 

For both populations all putative fathers and mothers were genotyped first. Thereafter, it was 4 

separately decided which microsatellite marker was meaningful and used for egg-genotyping later on. 5 

On average, each egg was genotyped with two microsatellites markers (freshwater population: 2.19 ± 6 

0.72 (mean ± SD); anadromous population: 2.02 ± 0.55 (mean ± SD)) of which at least one 7 

(freshwater population: 1.25 ± 0.45 (mean ± SD); anadromous population: 1.54 ± 0.59 (mean ± SD)) 8 

was 100 % informative. 9 

To successfully assign fatherhood, fourteen eggs, their mothers and putative fathers were 10 

additionally genotyped with four additional microsatellite markers [see 2]. 11 

Locus  GenBank 
accession no. dye label tail tail-sequence 5'- 3‘ 

GAC1097PBBE AJ010352 D2 (black) M13 TGTAAAACGACGGCCAGT 

GAC1125PBBE AJ010354 D2 (black) M13 TGTAAAACGACGGCCAGT 

GAC4170PBBE AJ010357 D4 (blue) Sp6 GATTTAGGTGACACTAT 

GAC5196PBBE AJ010359 D3 (green) T7 TAATACGACTCACTATAG 

 12 

  13 
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Microsatellite markers for the three-spined stickleback (Gasterosteus aculeatus L.) 15 

and their applicability in a freshwater and an anadromous population. Conserv 16 

Genet 2002, 3:79-81. 17 

2. Largiadèr CR, Fries V, Kobler B, Bakker TCM: Isolation and characterization of 18 

microsatellite loci from the three-spined stickleback (Gasterosteus aculeatus L.). 19 

Mol Ecol 1999, 8:342-344. 20 
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Additional file 3 PCR conditions of the microsatellite markers used for paternity 1 

analyses. 2 

PCR program: 
GAC1116PBBE, GAC2142PBBE, 
GAC4174PBBE, GAC7033PBBE 

preheating 94 °C 15 min. 
40 cycles  
denaturing 94 °C 30 sec. 
annealing 60 °C 30 sec. 
elongating 72 °C 60 sec. 
final extension cycle 72 °C 30 min. 

  

PCR program: 
GAC1097PBBE, GAC1125PBBE, 
GAC4170PBBE, GAC5196PBBE 

preheating 94 °C 15 min. 
30 cycles  
denaturing 94 °C 60 sec. 
annealing 58 °C 45 sec. 
elongating 72 °C 60 sec. 
8 cycles  
denaturing 94 °C 60 sec. 
annealing 53 °C 45 sec. 
elongating 72 °C 60 sec. 
final extension cycle 72 °C 30 min. 

 3 
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Additional file 4 Overview of all fitted linear mixed-effect models. 1 

model-no. dependent variable explanatory variable random factor 

1.  a) percentage of fertilized eggs 
(freshwater population) 

sub-trials 
(main or control experiment) trial number 

     b) percentage of fertilized eggs 
(anadromous population) 

sub-trials 
(main or control experiment) trial number 

2.  a) percentage of fertilized eggs 
tail length 
body size (male) 
egg mass 

population & 
trial number 

     b) percentage of fertilized eggs 
head to tail length ratio 
body size (male) 
egg mass 

population & 
trial number 

 2 
In all models, explanatory variables were stepwise removed in the order of statistical 3 

relevance. In model-no. 2. a) and 2. b) body size (male) and egg mass were left in the model 4 

to control for potential differences in males’ phenotype and females’ egg quality. In addition, 5 

in all models random factors (trial number and population) were never removed to control for 6 

the paired study design and potential population differences, respectively. 7 
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