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Abstract
Background: Assortative mating patterns for mate quality traits like body size are often observed
in nature. However, the underlying mechanisms that cause assortative mating patterns are less well
known. Sexual selection is one important explanation for assortment, suggesting that i) one (usually
the female) or both sexes could show preferences for mates of similar size or ii) mutual mate
choice could resolve sexual conflict over quality traits into assortment. We tested these
hypotheses experimentally in the socially monogamous cichlid fish Pelvicachromis taeniatus, in which
mate choice is mutual.

Results: In mate choice experiments, both sexes preferred large mates irrespective of own body
size suggesting mating preferences are not size-assortative. Especially males were highly selective
for large females, probably because female body size signals direct fitness benefits. However, when
potential mates were able to interact and assess each other mutually they showed size-assortative
mating patterns, i.e. the likelihood to mate was higher in pairs with low size differences between
mates.

Conclusion: Due to variation in body size, general preferences for large mating partners result in
a sexual conflict: small, lower quality individuals who prefer themselves large partners are
unacceptable for larger individuals. Relative size mismatches between mates translate into a lower
likelihood to mate, suggesting that the threshold to accept mates depends on own body size. These
results suggest that the underlying mechanism of assortment in P. taeniatus is mutual mate choice
resolving the sexual conflict over mates, rather than preference for mates of similar size.

Background
Sexual selection is a general selective force that has been
intensively investigated in the past decades [see [1]]. The
form and intensity of sexual selection are highly variable
among species. In species in which mating is non-ran-
dom, females are often expected to be choosy, especially

when male parental investment is low. However, choosi-
ness may also occur in males and should be promoted in
both sexes when variances in quality of potential mates
and parental investment are high [2,3]. Hence, mating
preferences in each sex could generate a zone for sexual
conflict, e.g. over mate quality [3,4].
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Body size plays an important role in sexual selection of
many species [1,5,6], including humans [7,8]. Usually,
larger individuals are favored. For example, larger males
may be preferred by females because of direct benefits, for
instance better territorial defence [e.g. [9]], thereby pro-
viding better environmental conditions for raising off-
spring [10]. However, in the field and laboratory size-
assortative mating is often reported and therefore much
research has concentrated on its occurrence and the causal
mechanisms [e.g. [11-14]]. Nevertheless, knowledge
about assortment and its underlying mechanisms in mat-
ing systems with mutual mate choice is scarce.

Many mechanisms may lead to assortative mating pat-
terns, for example spatial or temporal distribution. How-
ever, mate choice is one important explanation for
assortment [see [15] and citations therein], and provides
several different mechanisms that may result in assortative
mating patterns. First, one sex (usually the female) or
both sexes may show assortative mating preferences, e.g.
with respect to body size [16,17]. Second, assortment may
be the consequence of intra-sexual competition [18], so
that only the larger winning individual is able to choose
its mating partner. For example, in the curculionid beetle
Diaprepes abbreviatus only competitive large males chose
large, highly fecund females, whereas the losers had to
accept the females of lower quality [19,20]. Third, mutual
mate choice could explain assortment by resolving sexual
conflict over mate quality traits [3,4]. When both sexes
show preferences [21] for high quality mates, irrespective
of own quality, low quality mates may be unacceptable.
As a consequence, only high quality individuals would
find partners which meet their preference. In contrast, low
quality individuals would fail to mate at all [4], unless
they show a choice threshold that accepts potential mates
correlating to their own quality. In this case, resulting
mating patterns would be assortative.

To test this hypothesis, it is necessary to show 1) direc-
tional mating preferences of both sexes, i.e. to exclude
assortative preferences, and 2) size-assortative mating pat-
terns independent of intra-sexual competition.

The study organism, Pelvicachromis taeniatus, is a cave-
breeding cichlid that is characterized by a high level of
cooperative biparental care [22]. Parental care often has
high costs [2,3,23], e.g. due to predation risk, and time
and energy loss. Thus, the probability of future mating
may be negatively influenced by parental effort. When the
costs of biparental care are high, males and females
should be choosy [2-4]. Both sexes of P. taeniatus make a
large investment in brood care and were choosy in prior
experiments [22,24]. Pairs are socially monogamous and
alternative mating tactics have not been observed yet. The
males' testis size is very small, even suggesting genetic

monogamy; however, the sperm length is extraordinarily
long [25]. Males and females show sexual dimorphism in
body size. Males are usually larger than females. Further-
more, both sexes are conspicuously colored. Males show,
among others, a yellow nuptial coloration of their ventral
body, while females develop a violet ventral coloration.
During courtship, both sexes present their ventral region
by arching it towards the partner while intensely quiver-
ing the whole body. After mutual mate choice and spawn-
ing the female cares for the eggs in the cave while the male
defends the territory against intruders. The fry swims free
after about one week and is then guarded by both parents.

The aim of our study was to test (1) whether mating pref-
erences for body size of males and females are present in
P. taeniatus and (2) the impact of size differences between
potential mates on the likelihood to mate when partners
are able to interact and assess each other mutually. In
order to measure mating preferences for body size, we
conducted a series of choice experiments using computer
animations of digital images of different sizes of the oppo-
site sex as stimuli. Test fish that greatly varied in body size
were chosen for the experiments, thus preferences for
assortative mating could be tested. A general problem
when investigating preferences for body size is that size is
often correlated with other factors. For example, large
individuals might differ in behavior from smaller ones. A
striking advantage of computer-manipulated stimuli is a
high degree of standardization between the stimuli
[26,27], thus minimizing the effects of confounding vari-
ables like rapid changes in coloration or different
responses in stimuli fish.

In a second experiment, the consequences of size differ-
ence between the sexes on the likelihood to mate as well
as the brood care intensity after successful mating were
tested. Furthermore, we investigated whether body size
could signal potential mate quality by analyzing variables
such as the amount of parental investment, egg number of
females and the number of surviving offspring.

Results
Size preferences in computer animations
Male mate choice
Males showed a highly significant preference for the larger
female stimulus in each treatment (small vs. medium: n =
19, z = 3.601, p < 0.001; small vs. large: z = -4.087, n = 21,
p < 0.001; medium vs. large: n = 24, z = -2.754, p = 0.006;
Fig. 1). The order of the treatments had no significant
effect (LRT: all p > 0.078).

With the exception of the "medium vs. large" treatment,
the males' standard length did not significantly correlate
with the time spent in front of the stimuli (Pearson and
Spearman correlations: all p > 0.177). The males' standard
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length correlated significantly negative with the time
spent in front of the large female stimulus in the "medium
vs. large" treatment (Spearman correlation: n = 24, r = -
0.536, p = 0.007).

The preference for the larger female tended to be stronger
in the "small vs. large" treatment compared to the "small
vs. medium" treatment (Wilcoxon test: n = 19, z = -1.913,
p < 0.056), as well as in the "small vs. large" compared to
the "medium vs. large" treatment (Wilcoxon test: n = 21,
z = -1.899, p = 0.058). No significant difference was found

between the "small vs. medium" and "medium vs. large"
treatment (paired t-test: n = 19, t = 0.894, p = 0.383).

Female mate choice
Females associated high significantly longer with the
larger male in the "small vs. large" treatment (paired t-test:
n = 23, t = -5.042, p = 0.001; Fig. 2) but showed no signif-
icant preferences for the larger one in the two remaining
treatments (paired t-tests: small vs. medium: n = 21, t =
0.812, p = 0.427; medium vs. large: n = 24, t = -0.944, p =
0.355; Fig. 2). However, a repeated measures analysis of

Male preferenceFigure 1
Male preference. Male preference expressed as percent of time spent in the association zone in front of female stimuli of dif-
ferent body size. Plotted are median, quartiles, percentiles. *** p < 0.001, ** p < 0.01, * p < 0.05, n.s. = not significant.

Female preferenceFigure 2
Female preference. Female preference expressed as percent of time spent in the association zone in front of male stimuli of 
different body size. Plotted are means + SD. *** p < 0.001, ** p < 0.01, * p < 0.05, n.s. = not significant.
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variance revealed that females high significantly discrimi-
nated between the smaller or larger male stimulus
(ANOVA: F1,38 = 13.910, p = 0.001). The order of the treat-
ments had no significant effect (LRT: all p > 0.148). The
females' standard length did not significantly correlate
with the time spent in front of the stimuli (Pearson and
Spearman correlations: all p > 0.138).

The preference for the larger male was significantly
stronger in the "small vs. large" than in both the "small vs.
medium" treatment (Wilcoxon test: n = 21, z = -2.950, p
< 0.003) and the "medium vs. large" treatment (Wilcoxon
test: n = 23, z = -2.516, p < 0.012). No significant differ-
ence was found between the "small vs. medium" and
"medium vs. large" treatments (paired t-test: n = 21, t = -
0.980, p = 0.339).

Comparison of preferences between the sexes
In all treatments, males spent significantly relative more
time than females with the larger stimulus of the opposite
sex, whereas females spent significantly more absolute
time in association zones than males (Table 1).

Control experiment
Both sexes significantly preferred the large stimulus
(males: mean ± SD = 78.41% ± 21.39%; females: mean ±
SD = 79.57% ± 26.54%) over the small stimulus (males:
mean ± SD = 21.59% ± 21.39%; females: mean ± SD =
20.43% ± 26.54%) when the extent of nuptial coloration
was kept constant between both stimuli (males: paired t-
test: n = 11, t = 4.404, p = 0.001; females: paired t-test: n
= 13, t = 4.018, p = 0.002).

Mating and brood care experiment
Overall, 15 pairs mated and nine pairs did not mate. The
likelihood to mate was significantly explained by the dis-

tance of pairs (LRT: χ2 = -4.508, df = 1, p = 0.034; Fig. 3)
and the relative size difference of pairs (LRT: χ2 = -4.344,
df = 1, p = 0.037). Within the group of unmated pairs,
females smaller than the mean female standard length of
the population showed significantly more courtship
behavior towards the males than females larger than the
mean female standard length (Mann-Whitney U test:
Nmale smaller = 4, Nmale larger = 5, z = -2.205, p = 0.032). The
number of days until spawning was not significantly
explained by the females' standard length (Cox regression:
LRT1,24 = 0.83, beta = 0.545 ± 0.571, p = 0.358). Body size
did not significantly correlate with different aspects of
parental investment during brood care (e.g. the time
males guarded caves, the female cared for eggs, the fre-
quency of warning signals, time near the young: all p >
0.313). The standard length of the females tended to
explain the number of eggs (LRT: F1,12 = 4.403, p = 0.057)
and significantly explained the number of surviving off-
spring (LRT: F1,12 = 6.810, p = 0.023).

Discussion and conclusion
Males, as well as females of P. taeniatus showed preference
for larger mates. However, the likelihood to mate in P. tae-
niatus was higher, when the size difference between poten-
tial mates was low, thus resulting in size-assortative
mating. This corresponds to previous findings in cichlids
concerning assortative mating patterns [21,28-31] and
preference for larger mates [9,32-34].

The results allow the discussion of the underlying mecha-
nism of the assortment because both individual prefer-
ences for body size and their consequences on the
likelihood to mate within the same species were investi-
gated. The hypothesis of assortment as a consequence of
individual preference for size-assortative mating can be
ruled out because no significant positive relationships and

Table 1: Differences in preferences between males and females

Treatment mean ± SD or median (quartiles) t or z n p

a)
small vs. medium Males: 78.27% ± 19.50% 4.568 Males: 19 <0.001

Females: 45.59% ± 24.91% Females: 21
small vs. large Males: 100% (96.38%; 100%) -2.752 Males: 21 0.006

Females: 86.59% (50.00%; 100%) Females: 23
medium vs. large Males: 84.56% (51.35%; 100%) -2.478 Males: 24 0.013

Females: 50.00% (37.95%; 84.05%) Females: 24
b)

small vs. medium Males: 60.00 s ± 25.00 s 4.427 Males: 19 <0.001
Females: 93.52 s ± 22.89 s Females: 21

small vs. large Males: 77.48 s ± 34.79 s -2.377 Males: 21 0.024
Females: 97.41 s ± 17.10 s Females: 23

medium vs. large Males: 66.75 s (51.00 s; 58.63 s) -3.177 Males: 24 0.001
Females:104.25 s (88.50 s; 113.38 s) Females: 24

Differences between males and females concerning a) the relative amount of time at the larger stimulus side and b) the absolute time in both 
association zones. Differences between the sexes were tested with Wilcoxon or t-tests. t or z = test statistics; n = sample size; p = probability.
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one negative correlation between individual body size
and preference for the larger stimulus were observed in
both sexes. Thus, when given free choice, both sexes of P.
taeniatus show preference for large potential mates. Fur-
thermore, intra-sexual competition as a mechanism was
excluded by the experimental design, although under nat-
ural conditions it might also play a role. Due to the
mutual character of courtship in the mating system, both
males and females are able to accept or reject mates,
depending on their individual size compared to that of
the mating partner. Consequently, large males could
reject small females and vice versa. The rejection of rela-
tively small mates is supported by our data since large
males did not mate with small females, although these
females showed intense courtship behavior. Rejected indi-
viduals may fail to mate at all, or have a lower threshold
to accept mates that are almost as small as themselves [4].
Thus, the underlying mechanism of size-assortment in P.
taeniatus is the resolution of sexual conflict over large
mates by mutual mate choice [3,4].

Whereas males preferred the larger female in all treat-
ments, females selected the larger male only when the size
difference between both stimuli was maximal. Females
may not have been able to perceive small differences
between stimuli due to the set-up, given that 2D-stimuli
may look similar in size when the female is not in the
middle of the tank. However, reference objects had been
installed. Moreover, males were able to discriminate
between the smaller and the larger female stimulus in all
treatments, although female stimuli were on average
smaller than male models.

Females had a less strong preference for larger mates than
males, but spent more time in the association zones. On
the one hand this could mean, that females may be less
selective for the trait and must present themselves to the
choosier sex [1]. On the other hand, each cave-occupying
male may initially be attractive for females [35], but an
increase of size difference among males may enhance the
importance of male body size for female mate choice. A
greater difference between stimuli led to a significant pref-
erence for the larger male stimulus, indeed. Thus, females
may be choosy, but a smaller difference in male size may
not be important. As paternal investment of P. taeniatus in
brood care seems to be independent of males' body size in
our study, the offspring may gain the same investment
from a medium-sized or large male. However, other pos-
sible advantages of larger males, e.g. protection against
predators, were not investigated in this study.

The adaptive significance of sexual selection on body size
has been discussed in many studies [14,36]. In the present
study, female body-size in P. taeniatus indicated the
number of surviving offspring, thus supporting previous
findings that females' body size reveals fecundity [e.g. [21]
and citations therein, [37]]. Thus, preference for large
females could increase male fitness. The impact of large
male body size was not investigated in the present study.
Larger males may be more successful in intra-sexual com-
petition, offering better territories or protection against
predators [9,38,39]. Furthermore, if larger males in P. tae-
niatus have advantages in intra-sexual competition (TT,
unpublished data) like larger males in other species [e.g.
[40-42]] females may prevent the loss of a brood when
preferring the larger male.

The parental investment of males – as well as females –
seemed to be independent of body size during brood care
in P. taeniatus. On the one hand this could mean, that
body size does not signal the quality of a potential mating
partner concerning brood care. On the other hand, brood
care may be performed by each sex on a constant high
level independent of its own or the partner's body size.
However, in our study parental investment of P. taeniatus
was measured in size-assortative mated pairs which do

Likelihood to mateFigure 3
Likelihood to mate. The likelihood to mate in P. taeniatus 
was significantly explained by the relative body size distance 
of pairs (see equation 1 and Results section for statistics). An 
equal distance was measured in four pairs (filled gender sym-
bols), thus 20 instead of 24 data points are shown. Gender 
symbols reveal whether the male (male symbol) or the 
female (female symbol) was relatively larger in a pair. In one 
case an equal distance between pairs with a relatively larger 
male and a relatively larger female was measured (male and 
female symbol combined).
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not represent the largest individuals of the population
used. Of course, parental investment was assessed under
optimal laboratory conditions leaving an influence of
body size under more stressful conditions open.

There are two general problems when investigating the
effects of body size on mating decisions. First, in many
species body size may be correlated to other traits. Thus, it
is impossible to disentangle which trait is ultimately
selected for. Second, the relative proportion of other traits
with respect to body size may be more important, making
body size relevant as a combined trait [e.g. [32]]. The con-
trol experiment in which the area of nuptial coloration
was kept constant independent of body size revealed a
strong preference for the larger stimulus in both sexes,
underlining that body size is decisive for each sex inde-
pendent of the extent of the nuptially colored area. We
cannot exclude that there are unknown sexual traits that
shift with the downscaling of the stimulus' body size.
Nonetheless, this method of investigating body size pro-
vides the highest possible degree of standardization.

In general, the sex with the higher reproductive costs is
expected to be more selective which is usually assumed to
be the female [see [43] for a recent model explaining
assortment by female mate choice]. Our results show that
P. taeniatus may be a good model species for research
questions concerning mutual mate choice. A recent review
revealed that mutual mate choice plays a role in many spe-
cies [see [44] for an overview of species showing mutual
mate choice or positive assortment]. Thus, assortment by
mutual mate choice may be an important mechanism for
the resolution of sexual conflict over quality traits in many
species.

Methods
Experimental animals
All individuals of P. taeniatus were bred and maintained
under standardized laboratory conditions [see [22]]. The
parents of the test subjects originated from the river
Moliwe in Cameroon (04°04'N/09°16'E), West Africa.
Individuals were F1- and F2-offspring from 23 outbreed-
ing pairs and were raised in mixed-sex family tanks (80 ×
30 × 30 cm). The tanks were surrounded with opaque
plastic sheets to avoid visual contact to other aquaria. Test
fish were 1–2 years old and reproductively active. The
water temperature was kept at 25 ± 1°C and natural light
conditions were given (L/D 12/12). Nutrition was pro-
vided once a day with a mixture of frozen chironomid lar-
vae and Artemia ssp.

Mate choice using computer animations
Preparation of artificial stimuli
We took digital photographs (Olympus Camedia Wide-
zoom 5060) of a nuptially colored male and female to

obtain source data for two-dimensional fish models. 2D-
models are a sufficient method to test mating preferences
in P. taeniatus for certain traits like body size (SAB, HK, TT,
TCMB unpublished data). The pictures were saved in
RAW-format to avoid the loss of coloration data due to
algorithmic compression. They were white-balanced dur-
ing import to Adobe Photoshop CS2. The size dimensions
of the pictures were manipulated for the three treatments
(Table 2).

To achieve moving animations of the models, we used
"The GIMP 2.20 with animation package". A grey back-
ground image (1024 × 400 px) was created (RGB:
238,238,238) including a reference object for each sex
(plant for test males/breeding cave for test females, in the
middle of the image). Each animation consisted of 30
frames per second which is an established method to
present artificial stimuli to test fish [26,27,45]. Each stim-
ulus moved a horizontal pathway from one side of the
monitor to the other for a period of 15 seconds, including
a two second stop in the middle. After that, it recurred
horizontally and moved back in the same time frame.

For each sex we created three different experimental treat-
ments (Table 2) with different body size of the stimuli.
The body size of each stimulus was adapted for a monitor
and video resolution of 1024 pixel width.

Experimental design
Experiments were conducted between 01 June 2007 and
02 August 2007. Before the start of the trials 30 males and
24 females, that varied greatly in body size (Table 3), were
randomly chosen and individually isolated in separate
tanks (25 × 15 × 15 cm) for a minimum period of two
days. The mating readiness of each test fish was deter-
mined visually on the basis of the ventral coloration, as
well as the display of courtship behavior in the family
tanks [22,24]. The isolation tanks were surrounded at the
broad sides by print-outs of the animation's background
image and opaque, grey partitions at the longer sides, thus
ensuring that fish did not interact with other isolated indi-
viduals and were able to habituate to the background and
reference objects also used in the trials. Java moss, Vesicu-
laria dubyana, was added to provide shelter for the
females, whereas the male tanks were equipped with a
breeding cave. All other conditions were similar to those
of the mixed-sex tanks. Each individual conducted the
three experimental treatments in random order. Test fish
were transported to the experimental set-up in their isola-
tion tank, thus reducing stress by leaving the fish in its
familiar habitat.

The set-up was illuminated by a fluorescent tube (37W)
installed one meter above the middle of the tank. Addi-
tionally, white Styrofoam surrounded the tank. Tanks
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containing the test fish were placed between two CRT
monitors of the same model (EIZO Flex Scan F520, 85 Hz,
connected to a Matrox G550 PCIe graphic board). The
level of the bottom of the tank was justified so that it coin-
cided with the lower margins of the monitor screens. An
association zone of 5 cm in front of each monitor was
marked on the white Styrofoam under the tank creating a
15 cm neutral zone in between.

It was determined randomly which stimulus was pre-
sented on which monitor. During an acclimatization
period of 15 minutes both screens showed the grey back-
ground. After acclimatisation, the stimuli appeared simul-
taneously on both monitors [46]. In which direction the
stimuli were moving (animations) was randomly deter-
mined. We recorded two minutes after the fish had visited
the first association zone, which is a time frame estab-
lished in recent studies [47-49]. After recording, the empty
background was shown again for five minutes. The trial
was then repeated with switched monitor sides of the
stimuli.

After the three experimental treatments, the standard
length and mass of the test fish was measured. A naïve
observer analyzed the video recordings. Mating prefer-
ences were measured as association time near a stimulus
of the opposite sex, which reliably predicts mating deci-
sions in both male and female P. taeniatus [[22] and refer-
ences therein, [24], TT, TCMB, N. Henning, HK
unplubished data]. The time spent in each association
zone was calculated over a period of two minutes after the
fish had first visited an association zone. In the analyses,
relative proportion of time spent in one of the association
zones was used. For each test fish, we averaged the time
spent in front of each stimulus in the first and the second
trial, thus excluding possible side biases. In each treat-
ment a different number of test fish completed both trials,
thus sample sizes varied among treatments. To compare
the preferences for stimuli between the three treatments,
we subtracted the relative time spent in front of the
smaller stimulus from the larger stimulus for each sex.

Control experiment
Small stimuli in the computer animations were down-
sized versions of the larger stimuli. Thus, other sexual
traits possibly playing a role in sexual selection were also

down-scaled like the extent of nuptial coloration of each
sex. We therefore carried out a control experiment to test
whether preference for body size in each sex was inde-
pendent from the extent of nuptial coloration. Experi-
ments were conducted between 03 December 2007 and
14 December 2007. The methods complied with the set-
up described above. We used the small and the large stim-
ulus for each sex from the former experiments as stimuli,
but kept the area of nuptial coloration constant in both
stimuli. Both stimuli showed the extent of nuptial colora-
tion of the small stimulus.

Mating and brood care experiment
Observations were made in winter 2007. We formed 24
outbreeding pairs differing in relative body size distance
by taking nuptially colored individuals of each sex from
family tanks, measuring their standard length, and sorting
males (range: 4.9–7.5 cm) in descending and females
(range: 3.4–5.0 cm) in ascending order of body size. Then
the largest male was combined to the smallest female and
vice versa (i.e. largest relative size distance, see equation 1
and 2 below) with a continuous shift of relative size dis-
tance of pairs in between. The pairs were allocated ran-
domly to aquaria (30 × 40 × 43 cm), which were filled
with 2/3 parts of tap water and 1/3 parts of osmotic water
and tempered at 25 ± 1°C. Two observers (SHS, SAB)
recorded behavioral patterns of each pair for 10 min daily
over a period of eight weeks. The observation order was
random and determined daily. Unmated pairs were stim-
ulated weekly by renewing 1/3 of the water volume with
the 2:1 tap/osmotic water mix, but observations were
stopped for pairs that were still unmated after three weeks.

After spawning, the cave was shortly removed and the
number of eggs was counted. The egg number of one
female could not be determined. We recorded several
behavioral patterns during courtship and parental care
[see [22] for details]. We recorded every 30 seconds
whether the male guarded the cave or not, or whether the
female cared for the eggs. Mating was counted as success-
ful when fry left the breeding cave and the parents showed
brood care for the free swimming offspring. The number
of surviving young was counted four weeks after the fry
had left the breeding cave. The sample size here was
reduced by one, as one pair cannibalized their fry after
three weeks. Fry were fed with living Artemia nauplii, and

Table 2: Total lengths of the manipulated images

Treatment Female stimuli size (cm) Male stimuli size (cm)

small vs. medium 3.5 vs. 4.5 5.0 vs. 6.5
small vs. large 3.5 vs. 5.5 5.0 vs. 8.0

medium vs. large 4.5 vs. 5.5. 6.5 vs. 8.0

Overview of pairs of artificial stimuli used in measuring mating preferences for body size. Each test fish conducted all three treatments in random 
order.
Page 7 of 9
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:129 http://www.biomedcentral.com/1471-2148/9/129
when they grew older with a mix of frozen Artemia, chi-
ronomid, and mosquito larvae.

In order to analyze the likelihood to mate we calculated
the body size distance of each pair relative to the mean
population size difference, called "distance of pairs" from
now on (Equation 1). However, males and females
achieve different maximum body sizes: a large female and
a large male have different absolute body sizes, but may
be the same in relative size compared to other individuals
of their own sex. Thus, we additionally calculated the rel-
ative size difference between a male and a female in rela-
tion to the mean body size of each sex in the population,
so called "relative size difference of pairs" from now on
(Equation 2).

Statistics
Parametric statistics were used when data did not signifi-
cantly deviate from normal distribution according to Kol-
mogorov-Smirnov tests with Lilliefors correction. Given
test probabilities are two-tailed throughout. p-values
<0.05 were considered statistically significant. Female
mate preferences in the computer animation experiments
were additionally analyzed by a repeated measures analy-
sis of variance. Because male data were not normally dis-
tributed (not even after transformation), only non-
parametric test statistics are shown. The likelihood to
mate in relation to the distance of pairs (see equation 1)
and relative size difference of pairs (see equation 2) were
analyzed with generalised linear models ("glm"), with
binomial error distribution and logit link function. The
impact of body size on the number of eggs or surviving
young was analyzed with linear models ("lm"). Likeli-

hood-ratio tests (LRT) assessed whether the removal of a
variable caused significant decrease in model fit. Reported
p-values of models refer to the increase in deviance when
the respective variable was removed ("lm": F-statistics;
"glm": Pearson's chi-square). Analyses were performed
using SPSS 12.0, and LRTs were calculated using R 2.6.1
statistical package.
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