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Inbreeding and ageing have substantial impact on an individual’s fitness. Both can lead to an accumulation of del-
eterious alleles resulting in an addition of effects when inbreeding and age interact. The aim of this study was to 
investigate the separate and simultaneous effects of both factors on primary reproductive traits in females of the 
West African cichlid Pelvicachromis taeniatus, a socially monogamous cave breeder with biparental brood care that 
prefers kin as mating partner. We compared 1-year-old and 4-year-old lab-bred inbred and outbred females to reveal 
potential effects of inbreeding and age on ovary and egg traits. Inbreeding and degree of microsatellite heterozygosity 
had no significant effects on primary reproductive traits (ovary mass, gonadosomatic index, egg number, egg size, 
and egg color). However, inbred females were larger than outbred ones and individual heterozygosity correlated posi-
tively with female body size. The lack of inbreeding depression was expected considering the inbreeding preference 
of P. taeniatus, suggesting that the genetic load is purged from the examined population. Older females were larger 
than younger females and larger females had heavier ovaries containing a higher number and more intensively yel-
low colored eggs. The results indicate that age does not negatively affect reproductive traits in females of P. taeniatus. 
We discuss the results in comparison with male P. taeniatus in which negative ageing effects were found.

ADDITIONAL KEYWORDS:  ageing – egg size – fecundity – gonad – inbreeding depression – microsatellite het-
erozygosity – ovary – senescence – West African cichlid.

INTRODUCTION

Age and inbreeding can affect individual reproductive 
traits, for example an individual’s fertility and fecun-
dity. As these two factors may interact and be additive, 
studies dealing with their interplay should contribute 
to a better understanding of their consequences. Such 
studies are few (Keller, Reid & Arcese, 2008; Decanini, 
Wong & Dowling, 2013).

Ageing is defined as the progressive loss of function 
associated with decreasing fertility and increasing 
mortality with advancing age (Kirkwood & Austad, 
2000). Two classic theories try to explain ageing effects 
(Charlesworth, 1994): the mutation accumulation the-
ory and the antagonistic pleiotropy theory. According 
to Medawar’s mutation accumulation theory (1952), 

deleterious alleles accumulate with age leading to a 
fitness reduction in late life (Medawar, 1952). William’s 
antagonistic pleiotropy theory (Williams, 1957) pre-
dicts that pleiotropic genes cause selection for earlier 
maturity and increased reproduction early in life at 
costs of reproduction late in life.

Ageing is expected to affect male reproductive traits 
more seriously than those of females. Although the 
risk of mutations generally increases with age, and 
mutations accumulate in the germ line (Pizzari et al., 
2008), the germ line mutation rate is lower in females 
than in males because fewer germ cells are produced 
in oogenesis than in spermatogenesis (e.g. Ellegren, 
2007). As a consequence, an age-related decline in 
sperm quality is often greater than a decline in egg 
quality.

In animals with indeterminate growth, such as 
fishes, age is correlated with body size, which in turn *Corresponding author. E-mail: K.Langen@zfmk.de
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influences fecundity (Berglund, Rosenqvist & Svensson, 
1986; Howard, 1988). As a consequence, in such spe-
cies higher fecundity of older and larger females may 
promote the evolution of delayed senescence compared 
to species with determinate growth, such as mammals 
and birds, in which fecundity does not increase with age 
(Reznick, Ghalambor & Nunney, 2002). In the marine 
fish Sebastes melanops, larger and older females pro-
duce offspring of higher quality (Berkeley, Chapman 
& Sogard, 2004). However,  other fish studies report a 
decline of fecundity or egg quality (Shelton et al., 2012). 
Thus although larger individuals seem to be preferred 
as mating partners in many species (Charlton, Reby & 
McComb, 2007; Chandler & Zamudio, 2008; Baldauf et 
al., 2009; e.g. Côte & Hunte, 1989; Shine et al., 2001), 
the positive effect of age and the negative effect of size 
need to be considered.

Inbreeding is another factor often influencing 
female reproductive success. It leads to an increased 
frequency of homozygotes (Hedrick, 2005) facilitating 
the expression of recessive deleterious alleles in a pop-
ulation. As a consequence, inbreeding often results in 
a decline of fitness (Slate et al., 2000; Frommen et al., 
2008; Charlesworth & Charlesworth, 1987). The qual-
ity of ovaries and eggs as well as egg quantity can be 
negatively affected by inbreeding (in insects: Robert, 
Couvet & Sarrazin, 2005; Akimoto, 2006; Robinson, 
Kennington & Simmons, 2009; in birds: Congdon & 
Briskie, 2010; in fishes: Gallardo et al., 2004). Due 
to inbreeding depression, most species avoid mat-
ing with relatives (reviewed in Pusey & Wolf, 1996). 
However, some species tolerate inbreeding and expe-
rience no disadvantages (reviewed in Szulkin et al., 
2013). Inbreeding tolerance or preference can evolve 
when the costs of inbreeding avoidance or the benefits 
of inbreeding override the costs of inbreeding (Kokko 
& Ots, 2006). Purging reduces the strength of inbreed-
ing depression (Pusey & Wolf, 1996), when selection 
acts against deleterious, recessive alleles in inbred 
populations (Kristensen & Sørensen, 2005). Thus, fur-
ther inbreeding can cause little or no fitness reduction 
(Keller & Waller, 2002), which has been shown in sev-
eral studies (reviewed in Crnokrak & Barrett, 2002).

Egg quantity and quality are two important fac-
tors affecting female reproductive success. In fishes, 
egg quality is determined by a female’s diet, nutrients 
within the yolk, the eggs’ genes, and maternal mRNA 
transcripts, besides the endocrine status of a female 
during oocyte growth (reviewed in Brooks, Tyler & 
Sumpter, 1997). Once ovulated, fish eggs need only few 
nutrients such as water and water chemicals (Holliday 
& Jones, 1967), thus all important contents for egg 
quality have to be incorporated during oocyte growth 
(Brooks et al., 1997). In several species, egg quality 
is often illustrated by the egg’s color: colorful yellow-
orange eggs contain more carotenoids, which are 

implemented in the egg yolk and act as antioxidants 
to protect vulnerable tissues against damage caused 
by free radicals during egg development (e.g. Blount, 
Houston & Møller, 2000). Furthermore, egg coloration 
is a signal for egg maturity with ripe eggs being more 
colorful (Rossoni et al., 2010). Thus, age and inbreed-
ing affect egg coloration and egg ripening.

In the present study, we examined the effects of inbreed-
ing and age on female gonadal traits in Pelvicachromis 
taeniatus. This West African cichlid shows inbreeding 
preference in laboratory experiments with both sexes 
preferring full siblings as mating partners (Thünken 
et al., 2007a, b, 2012). Inbreeding might be adaptive in 
this species because genetically related breeding pairs 
are better parents and inbreeding individuals may 
increase their inclusive fitness. Inbreeding does not 
seem to be associated with high costs in this species. For 
instance, there is no evidence for inbreeding depression 
in juvenile fish in terms of reduced survival or growth 
(Thünken et al., 2007a). Furthermore, the findings of 
these studies are underlined by a population genetic 
analysis showing inbreeding in the wild Moliwe popula-
tion (Cameroon, Africa) (Langen et al., 2011). Here, we 
investigated the effects of ageing and inbreeding and 
their interplay on ovary and egg traits of adult females. 
For that purpose, we examined 1-year-old (young) and 
4-year-old (aged) reproductively active inbred and out-
bred females. Additionally, we calculated heterozygo-
sity values based on microsatellite data to reveal and 
relate the degree of heterozygosity to inbreeding effects. 
Furthermore, as fishes show indeterminate growth, 
we analyzed allometric relationships of the gonadal 
traits to study size effects in more detail. From previ-
ous studies, we expect little negative inbreeding effects 
in young females due to purging in this model species 
(Thünken et al., 2007a; Langen et al., 2011). As muta-
tions of the germ line increase with advancing age, we 
expect negative ageing effects not only on egg quantity 
but also on ovary quality and egg quality. Furthermore, 
theory predicts that age and inbreeding should interact 
leading to stronger expressed inbreeding effects in old 
individuals compared to young ones (Charlesworth & 
Hughes, 1996; Goymer, 2008). In males of P. taeniatus, 
we found strong age effects on gonadal and sperm traits 
but little inbreeding effects, which were age-dependent, 
as they were only present in aged males (Langen et al., 
2016). Due to differences in the germ line mutation rate 
between females and males (e.g. Ellegren, 2007), we 
expect to find less effects in females compared to males.

MATERIAL AND METHODS

Study SpecieS and experimental fiSh

Pelvicachromis taeniatus is a socially monogamous 
cave breeder with biparental brood care that shows 
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sexual size dimorphism and sexual dichromatism, 
the latter being most pronounced during reproduc-
tion (Baldauf et al., 2011). Females have a purple belly 
coloration that represents information about female 
quality and maturation status (Baldauf et al., 2011). 
While the male defends the territory against intrud-
ers, clutch and larvae are mainly parented by the 
female in the cave. Free-swimming fry are guarded by 
both parents for a few weeks.

In total, 38 1-year-old virgin females originating 
from 16 families (19 inbred and 19 outbred individuals 
of 8 families each) and 28 4-year-old virgin individu-
als from 12 families (14 inbred from 5 families and 14 
outbred from 7 families) were examined. Second gen-
eration, reproductively active, and lab-bred females 
originating from F1-offspring of a wild-caught parent 
generation of the Moliwe River population in Cameroon 
(West Africa, 04°04ʹN/09°16ʹE) were used. In the years 
2003 and 2006, adult breeding pairs of P. taeniatus 
were caught in the Moliwe River and transported to 
the Institute for Evolutionary Biology and Ecology in 
Bonn, Germany. First, F1-offspring of the wild parents 
were raised. To create the inbred and outbred fish, 
brother–sister pairs and unrelated pairs were bred in 
large tanks (50 cm × 30 cm × 30 cm, 45 L). Tanks were 
separated by opaque grey plastic partitions to avoid 
visual contact between families. The water tempera-
ture was kept at 25 ± 1 °C. Tanks were equipped with 
sand, Java moss, and an internal filter but without 
caves to avoid reproduction. In spring 2006 (4-year-old 
individuals) and summer 2009 (1-year-old individu-
als), experimental fish were produced from inbreeding 
(full-sib mating partners) and outbreeding (unrelated 
mating partners) pairs and raised in full-sib families 
in large tanks (50 cm × 30 cm × 30 cm, 45 L) that were 
separated by opaque grey plastic partitions to avoid 
visual contact between families. Tanks were equipped 
with sand, Java moss, and an internal filter but with-
out caves to avoid reproduction. The water tempera-
ture was kept at 25 ± 1 °C.

In May and October of 2010, females were removed 
from group tanks and kept individually in small tanks 
(30 cm × 20 cm × 20 cm, water level 12 cm, 7.2 L), 
equipped with sand, an airstone, and half a flowerpot 
as breeding cave. Tanks were filled with 1-day-old tap 
water and lit with a fluorescent lamp (Lumilux de 
Luxe daylight, Osram, 36 W) with a light–dark cycle 
of 12L:12D. The water temperature was 25 ± 1 °C. 
To avoid visual contact between females to prevent 
female competition, tanks were separated by grey 
opaque plastic partitions. Fish were fed daily ad libi-
tum on defrosted Chironomus larvae. Females were 
allowed to see a male that was placed in front of the 
female’s tank in a transparent plastic box (18.5 cm × 
11.5 cm × 13.5 cm) for 30 min per day over a period of 
9 days to ensure production of eggs, that is ripening of 

eggs. Only brightly colored, non-stressed males of dif-
ferent families were chosen as stimulus fish to assure 
females’ reaction. All females responded to the males’ 
presence by showing courtship behaviour and swim-
ming towards the male.

The standard length (SL) of each fish was measured 
and body mass (BM) was weighed (Sartorius LC 221S, 
Germany) after 9 days (mean ± SD: SLINyoung = 3.96 ± 
0.31 cm, SLOUTyoung = 3.75 ± 0.19 cm, SLINaged = 4.57 ± 
0.27 cm, SLOUTaged = 4.41 ± 0.17 cm; BMINyoung = 1.71 
± 0.37 g, BMOUTyoung = 1.46 ± 0.20 g, BMINaged = 2.48 
± 0.38 g, BMOUTaged = 2.33 ± 0.29 g). A fin clip of each 
female was stored in 99.8% ethanol in 1.5 mL tubes for 
later DNA extraction. Females were killed quickly by 
decapitation and stored in 4% formaline over a period 
of at least 2 weeks for fixation, followed by a graded 
ethanol series in 10% steps from 30 to 70%. After fixa-
tion, SL and BM were measured again to account for 
differences due to formaline storage (after storage 
individuals were significantly larger but lighter, P < 
0.001). Thus, the second measurements were used for 
statistical analyses as ovary and egg traits were also 
measured after storage.

Ovary and egg traitS

After fixation, ovaries were extracted surgically. 
Ovary mass was weighed with an analytical balance 
(Explorer OHAUS E11140, error ± 0.1 mg) three times 
for each ovary and a mean was calculated. The total 
gonad mass and the gonadosomatic index (GSI) were 
calculated according to de Vlaming, Grossman & 
Chapman (1982) [GSI = (gonad mass [g]/body mass 
[g]) × 100]. Each ovary was put on an object slide plas-
tered with Munsell-chips as color standard and scale 
paper as size standard, and photographed against 
a black background under a binocular microscope 
(Leica S8AP0, camera Hitachi HV-C20A 3CCD, soft-
ware Discus v. 4.6). To ensure standardized illumina-
tion among photos, ovaries were lit with a cold light 
source (KL 1500; settings: stage 4, aperture C, color 
temperature 3200 K), which was the only light source 
in the darkened room and it was always placed in the 
same position. Before taking a photo, a white balance 
adjustment was conducted with a brightness of 0 and 
a contrast of 0.45.

Ovaries were dissected in a Petri dish with distilled 
water to keep ovaries and eggs wet for easier prepara-
tion. Eggs were counted and divided into three classes: 
large (ripe and yellow), medium (white), and small 
eggs (opaque). Eggs were placed in a Petri dish with 
Munsell-chips and scale paper and photos were taken 
using the same setup and light conditions as for ova-
ries. Egg length and width were measured three times 
from the photos using ImageJ v. 1.43. Out of the mean 
values, the effective egg diameter (for non-spherical 
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eggs) was calculated according to Coleman (1991) 
using the following equation: effective diameter 
(de) = (ab2)1/3, with the major axis a (egg length) and 
the minor axis b (egg width).

egg cOlOratiOn meaSurementS

The female’s ovary and egg coloration were measured 
on the photos using the software Adobe Photoshop 
(CS4). Photos were imported with the default color 
temperature. On the basis of the white Munsell-chip 
a tonal correction was conducted. The CIE L*a*b 
(Commision Internationale de l’Eclairage, 1976) color 
space was used for analysis. It is a device-independent, 
standardized, and perceptually uniform color space 
(Chen, Hao & Dang, 2004), commonly used in analyz-
ing fish coloration partly including carotenoid-based 
coloration (e.g. Svensson et al., 2009). The L*-value 
indicates the lightness, the a*- and b*-values the satu-
ration of different colors (a: negative values = green, 
positive values = red; b: negative values = blue, posi-
tive values = yellow). Ovaries and eggs were cut out 
from images using the magnetic lasso tool and an 
average of the L*a*b was calculated out of the whole 
area. Six eggs per ovary of the largest egg class (ripe 
eggs to be spawned) were measured, eggs randomly 
chosen from each ovary. A chromaticity value, which 
entered the analyses, was then calculated according to 
the following formula by Robertson (1977) represent-
ing the color saturation:

Chromaticity 2 2= a b+

micrOSatellite analySiS

A microsatellite analysis was conducted, on the 
one hand, to determine the effects of experimental 
inbreeding on heterozygosity and, on the other hand, 
to take into account the potential variation in individ-
ual heterozygosity using nine microsatellites already 
established in P. taeniatus through cross-species 
amplification (Langen et al., 2011; Langen, Thünken & 
Bakker, 2013). Details on microsatellite analysis and 
microsatellite statistics are given in the electronic sup-
plementary material and methods.

StatiStical analySeS

Statistics were performed with the R version 3.1.0 
statistical software package (R Development Core 
Team, 2009). P-values are two-tailed throughout. 
Linear mixed effects models (lme’s) were conducted 
that implement family identity of individual fish as 
random factor and are based on a likelihood ratio test 
(LRT) using the nonlinear mixed effects models (nlme) 

package in R. Non-significant interactions (P > 0.05) 
and factors (P > 0.05) were removed from the model.

The effects of age class (1-year-old vs. 4-year-old) and 
breeding line (inbred vs. outbred) on body, ovary, and 
egg traits were examined (see Table 1). Additionally, 
SL was added as fixed factor to estimate its relative 
importance because age and SL are often correlated. 
To account for previous inbreeding, lme’s with het-
erozygosity and age class and SL as fixed factors were 
conducted.

Reported P-values of models refer to the increase in 
deviance when the respective variable was removed. 
If data were not normally distributed according to the 
Shapiro-Wilk test, residuals were tested on normal 
distribution or data were transformed. Data of gonad 
mass were logarithmically (only for the lme with effec-
tive diameter as explanatory variable) and data of 
effective diameter were exponentially transformed to 
achieve normally distributed data. The sample size 
for gonad mass and GSI was only N = 65 instead of N 
= 66 because one 1-year-old outbred female had only 
a single ovary. For egg coloration measurements, two 
females had only non-ripe eggs that were not used 
leading to a sample size of N = 64.

RESULTS

effectS Of age and inbreeding

Interactions between ageing and inbreeding were 
never significant (see Table 1). Aged females were 
significantly larger and heavier than young ones (SL: 
LRT, N = 66, χ2 = 48.649, P < 0.001; BM: LRT, N = 
66, χ2 = 39.868, P < 0.001), and inbred females were 
larger and heavier than outbred ones (SL: LRT, N = 
66, χ2 = 5.166, P = 0.023; BM: LRT, N = 66, χ2 = 5.198, 
P = 0.023). In aged females, ovaries were heavier than 
in young females (Table 1, Fig. 1A), but the GSI did 
not differ significantly between age groups (Table 
1). Ovary color intensity was significantly greater 
in older females than in young ones (Table 1). Large 
females produced significantly more eggs than small 
females (Table 1, Fig. 1B). Egg coloration was more 
intense (more yellow) in old females than in young 
ones (Table 1). Age, SL, and breeding line did not sig-
nificantly affect the egg’s effective diameter (Table 1). 
Descriptive statistics of measured traits are given in 
Table 2.

effectS Of heterOzygOSity

According to microsatellite analyses, the inbred 
group exhibited high inbreeding values and low het-
erozygosity and deviated significantly from Hardy 
Weinberg equilibrium (A = 4, Hexp = 0.456, Hobs = 0.350,  
pHWE < 0.001, FIS = 0.231), while the outbred group did not 
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Table 1. Results of the linear mixed effects models examining the effect of age and inbreeding (or microsatellite heterozy-
gosity, respectively) on different gonadal traits of female P. taeniatus.

Dependent variable Effects N Δd.f. χ2 P

Ovary mass Fixed Breeding line × age 65 1 0.133 0.715
Age 65 1 0.002 0.962
Breeding line 65 1 0.039 0.844
SL 65 1 13.916 <0.001

Heterozygosity × age 65 1 0.035 0.853
Age 65 1 0.0003 0.985
Heterozygosity 65 1 0.572 0.450
SL 65 1 13.916 <0.001

Random Family 65 1 9.587 0.002

Gonadosomatic index Fixed Breeding line × age 65 1 0.592 0.442
Breeding line 65 1 0.024 0.876
Age 65 1 0.336 0.562
SL 65 1 0.052 0.819

Heterozygosity × age 65 1 0.008 0.929
SL 65 1 0.220 0.639
Age 65 1 0.121 0.727
Heterozygosity 65 1 0.488 0.485

Random Family 65 1 1.923 0.166

Egg number Fixed Breeding line × age 66 1 0.394 0.530
Breeding line 66 1 0.419 0.517
Age 66 1 2.766 0.096
SL 66 1 30.338 <0.001

Heterozygosity × age 66 1 0.018 0.893
Heterozygosity 66 1 3.027 0.082
Age 66 1 2.766 0.096
SL 66 1 30.338 <0.001

Random Family 66 1 3.057 0.080

Effective egg diameter Fixed Breeding line × age 66 1 0.050 0.823
SL 66 1 2.188 0.139
Breeding line 66 1 1.686 0.195
Age 66 1 2.522 0.112

Heterozygosity × age 66 1 0.054 0.816
Heterozygosity 66 1 0.061 0.806
SL 66 1 0.747 0.388
Age 66 1 2.522 0.112

Random Family 66 1 0.000 0.999

Egg color saturation Fixed Breeding line × age 64 1 1.521 0.218
SL 64 1 0.038 0.845
Breeding line 64 1 1.826 0.177
Age 64 1 10.833 0.001

Heterozygosity × age 64 1 0.264 0.608
Heterozygosity 64 1 0.020 0.888
SL 64 1 0.624 0.430
Age 64 1 10.833 0.001

Random Family 64 1 0.181 0.671

Ovary color saturation Fixed Breeding line × age 66 1 1.450 0.229
SL 66 1 0.157 0.692
Breeding line 66 1 1.000 0.317
Age 66 1 9.385 0.002



6 K. LANGEN ET AL.

© 2017 The Linnean Society of London, Biological Journal of the Linnean Society, 2017, XX, 6–9

(A = 4.11, Hexp = 0.471, Hobs = 0.487, pHWE = 0.783, FIS = 
–0.032). Heterozygosity was positively related to SL and 
BM (SL: LRT, N = 66, χ2 = 6.491, P = 0.011; BM: LRT, N 
= 66, χ2 = 9.818, P = 0.002). Heterozygosity did not affect 
any egg traits (Table 1). Age and/or SL explained ovary 
and egg traits better than heterozygosity (Table 1).

DISCUSSION

In the present study, we examined the effects of age 
and inbreeding on gonadal and egg traits in female 

P. taeniatus. We found no negative ageing effects on 
gonadal female traits, but instead larger females had 
a higher number of eggs as well as larger eggs, which 
were more intensively yellow colored. Inbreeding also 
had no negative effect on egg traits.

The results of our study contrast to the results of 
some other fish studies that report inbreeding depres-
sion affecting females’ fecundity (e.g. Gallardo et al., 
2004; Fessehaye et al., 2009). However, a study of 
Naish et al. (2013) also detected no significant cor-
relation between inbreeding coefficient and female 

Table 2. Descriptive statistics of measured traits.

Trait Young Aged

Inbred Outbred Inbred Outbred

Standard length (cm) 3.83 ± 0.29 (N = 19) 3.64 ± 0.18 (N = 19) 4.56 ± 0.25 (N = 14) 4.41 ± 0.15 (N = 14)
Body mass (g) 1.73 ± 0.41 (N = 19) 1.49 ± 0.22 (N = 19) 2.66 ± 0.45 (N = 14) 2.49 ± 0.33 (N = 14)
Ovary mass (mg) 94.03 ± 42.20 (N = 19) 72.46 ± 33.20 (N = 18) 123.25 ± 89.52 (N = 14) 135.66 ± 60.30 (N = 14)
Gonadosomatic index 5.29 ± 2.40 (N = 19) 4.84 ± 1.94 (N = 18) 4.38 ± 2.85 (N = 14) 5.29 ± 1.91 (N = 14)
Egg number 177.84 ± 56.09 (N = 19) 150.37 ± 42.90 (N = 19) 232.21 ± 82.92 (N = 14) 227.79 ± 86.74 (N = 14)
Effective egg diameter (mm) 0.84 ± 0.22 (N = 19) 0.89 ± 0.18 (N = 19) 0.77 ± 0.18 (N = 14) 0.84 ± 0.11 (N = 14)
Egg color saturation 40.95 ± 2.58 (N = 17) 43.53 ± 4.45 (N = 19) 46.02 ± 4.73 (N = 14) 45.73 ± 5.34 (N = 14)
Ovary color saturation 43.19 ± 4.98 (N = 19) 45.59 ± 3.63 (N = 19) 48.23 ± 5.72 (N = 14) 47.81 ± 4.65 (N = 14)

Mean ± standard deviation and sample sizes are given for young and aged inbred and outbred females

Figure 1. Boxplots of (A) ovary mass and (B) egg number of 1-year-old and 4-year-old inbred (grey) and outbred (white) 
females. Median, quartiles, and whiskers are given. **P < 0.01, ***P ≤ 0.001.

Dependent variable Effects N Δd.f. χ2 P

Heterozygosity × age 66 1 3.378 0.067
SL 66 1 0.035 0.852
Heterozygosity 66 1 1.558 0.212
Age 66 1 9.385 0.002

Random Family 66 1 0.017 0.896

Standard length (SL) was included as covariate and family as random factor. The sample size (N), difference of degrees of freedom (Δd.f.), χ2, and  
P-values are given. Significant differences (P < 0.05) are marked in bold

Table 1. Continued
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fecundity, gonad mass or age at return in the rainbow 
trout (Oncorhynchus mykiss). In that study, only body 
size decreased significantly with increasing inbreed-
ing coefficient, which is in contrast to our findings as 
inbred female P. taeniatus were larger than outbred 
ones. Because body size is an important mate choice 
criterion for males of P. taeniatus (Baldauf et al., 2009; 
Thünken et al., 2012), inbred females being larger 
than outbred females may have an advantage in mate 
choice. The present results underline previous findings 
(Thünken et al., 2007a, b) by failing to find negative 
effects of inbreeding on primary reproductive female 
traits in this species, suggesting that deleterious 
alleles are probably purged from the population.

In the present study, age had an effect on egg and 
ovary coloration with older females having more color-
ful eggs and ovaries. Yellow eggs are assumed to be 
the ripest eggs in the ovary and thus the ones to be 
spawned (e.g. Rossoni et al., 2010). The yellow colora-
tion is often due to carotenoids that are important in 
egg development, influencing egg quality (Blount et al., 
2000), hatching success, and juvenile resistance (e.g. 
Watanabe & Vassallo-Agius, 2003). Carotenoids have 
to be absorbed as part of the diet (in fishes, e.g., through 
red mosquito larvae). There is increasing evidence that 
carotenoids act as powerful antioxidants, support the 
immune system, and reflect an animal’s health status 
(Olson & Owens, 1998; von Schantz et al., 1999). Thus, 
more colored eggs reflect the female’s health status.

Larger females of P. taeniatus had heavier ova-
ries with more eggs compared to smaller ones. 
Such a fecundity–size relationship, which is most 
pronounced in species with indeterminate growth 
(Berglund et al., 1986; Howard, 1988), has been 
reported in many fishes (e.g. cichlids: Galvani 
& Coleman, 1998; three-spined sticklebacks 
Gasterosteus aculeatus: Kraak & Bakker, 1998; 
Kolm et al., 2006a, b; Baker et al., 2008; salmonids: 
Naish et al., 2013). Accordingly, a female’s egg num-
ber should increase with a female’s body size, thus 
males should prefer to mate with a larger female 
as she increases his fitness by producing more off-
spring (Kraak & Bakker, 1998; Einum & Fleming, 
1999; Kolm, 2002). Egg diameter and egg size are 
important because they relate to larval size, growth 
rate, survival, adult fecundity, and behaviour (Katoh 
& Nishida, 1994; Segers & Taborsky, 2011).

In contrast to the positive age and size effects in 
females of P. taeniatus in the present study, we found 
negative age effects in a parallel study on males. Old 
males had less sperm than young males (Langen et 
al., 2016). Furthermore, while we found generally no 
inbreeding depression in females, in males inbreed-
ing effects were age-dependent and occurred in older 
males, with outbred males having a higher testis mass 
and a higher sperm number than inbred males (see 

Langen et al., 2016). The differences between the sexes 
of P. taeniatus concerning age and inbreeding effects 
may result from higher mutation rates in the germ 
line of males compared to that of females. Therefore, 
female gonads should age more slowly and be less 
negatively affected by ageing than male gonads. Aged 
females in this study showed no typical symptoms of 
ageing, such as crooked backs, on body shape. Under 
natural conditions, predation is probably a major 
cause of mortality. Furthermore, in the present study 
females were prevented from reproduction, which is 
a highly energy demanding process (Baldauf et al., 
2011). Thus, ageing and lifespan, which are substan-
tial fitness components, are expected to differ between 
natural and laboratory individuals of P. taeniatus (see 
Kawasaki et al., 2008).

In short, we found no evidence for inbreeding 
depression and negative ageing effects on primary 
reproductive female traits in P. taeniatus. However, 
inbred females had a potential advantage over out-
bred females by being larger. Inbreeding did not 
negatively affect egg quality and quantity in young 
as well as in old females, probably due to purging. 
Quality and quantity of reproductive traits did not 
decrease with age and body size. In conclusion, large 
females of P. taeniatus may have fitness advantages 
by producing more, larger, and more intensively 
colored eggs and thus eggs of higher quality and 
quantity compared to smaller females. Overall, we 
report evidence for an increase of quality and quan-
tity of reproductive traits with age in females of a 
short-lived species but no expression of inbreeding 
depression.
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