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Abstract There is a need for rapid and reliable molecular
sexing of three-spined sticklebacks, Gasterosteus aculeatus,
the supermodel species for evolutionary biology. A DNA re-
gion at the 5’ end of the sex-linked microsatellite Gac4202
was sequenced for the X chromosome of six females and the
Y chromosome of five males from three populations. The Y
chromosome contained two large insertions, which did not
recombine with the phenotype of sex in a cross of 322 indi-
viduals. Genetic variation (SNPs and indels) within the inser-
tions was smaller than on flanking DNA sequences. Three
molecular PCR-based sex tests were developed, in which the
first, the second or both insertions were covered. In five
European populations (from DE, CH, NL, GB) of three-
spined sticklebacks, tests with both insertions combined
showed two clearly separated bands on agarose minigels in
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males and one band in females. The tests with the separate
insertions gave similar results. Thus, the new molecular
sexing method gave rapid and reliable results for sexing
three-spined sticklebacks and is an improvement and/or alter-
native to existing methods.

Keywords Fish - PCR-based sex test - Population - Sex
determination

Introduction

Differences in ecology, physiology, morphology and behav-
iour between the sexes are described in many animal species
(e.g. McPherson and Chenoweth 2012), raising the need for
taking sex into account in scientific studies. However, sexing
of animal species on the basis of non-invasive phenotypic traits
is often not possible or time consuming, e.g. in early life stages
or as adults in sexually monomorphic species. Molecular
sexing methods have the advantage of overcoming these re-
strictions of phenotypic sexing. They are frequently applied in
birds and mammals, which have relatively conserved genetic
sex-determination systems (Bachtrog et al. 2014). Molecular
sexing in birds is applied in a plethora of research areas, ranging
from population, behaviour and evolutionary studies to sex
ratio evolution and species mating system assessment, improve-
ment of captive breeding programmes, managing of wildlife
species, analysis of breeding strategies in commercial poultry
to forensic studies (Morinha et al. 2012). In fishes, molecular
sexing is less frequently applied, probably because they show
diverse sex-determination systems (Bachtrog et al. 2014).

The three-spined stickleback, Gasterosteus aculeatus L., is
a small teleost fish species that has been extensively studied
from a behavioural and ecological perspective (Wootton 1976,
1984; Bell and Foster 1994; Ostlund-Nilsson et al. 2007).
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Since the integration of molecular genetics in stickleback re-
search (Peichel et al. 2001), the three-spined stickleback is
recognised as a supermodel species for evolutionary biology
(Gibson 2005; Barber and Nettleship 2010). Three-spined
sticklebacks show a distinctive sexual dichromatism during
the reproductive season (Wootton 1976, 1984), whereas they
appear monomorphic outside the breeding season (Wootton
1976, 1984). Sex differences of non-reproductive fish have
been described for example with respect to boldness (King
et al. 2013), migratory behaviour (Cano et al. 2008), feeding
mechanism (McGee and Wainwright 2013) and parasite load
(Arnold et al. 2003). However, many sex differences in stickle-
back’s behaviour and ecology might remain elusive due to the
lack of a simple, rapid and reliable sexing method. Gasterosteus
aculeatus has mostly a XY sex-determination system, with
linkage group 19 (LG19) being the sex chromosome pair
(Peichel et al. 2004; Ross and Peichel 2008; Urton et al.
2011). Three molecular sex tests for G. aculeatus have been
developed. Griffiths et al. (2000) assessed sex-linked AFLP
markers, while Peichel et al. (2004) found a sex-specific poly-
morphism in the 3'UTR of the isocitrate dehydrogenase (/dh)
gene at LG19. Toli et al. (2016) developed a multi-marker assay
based on a Bayesian update approach using genotype scores
from three sex-linked loci, i.e. the Idh (Peichel et al. 2004),
Gasm6 (Natri et al. 2013) and Stn190 loci (Peichel et al.
2001). Potentially, other tests may be developed from sex-
specific microsatellites established by Peichel et al. (2001),
Shikano et al. (2011b), Shimada et al. (2011) and Natri et al.
(2013). The current molecular assays are, however, not perfect
(see Discussion) and, thus, an alternative would be useful.

In the present study, we developed a new, simple, rapid and
reliable molecular sex test for G. aculeatus and tested its ap-
plicability for various European populations.

Materials and methods
Study populations and species

An unpublished (Largiadér et al.) sex-linked microsatellite
Gac4202 (repeat (GA),s, primer pair Alt-1 and Alt-2
(Table 1) was developed from a wild-caught fish of a three-
spined stickleback population near Roche/Montreux,
Switzerland (46° 26" N, 6° 55" E) (see Largiader et al. 1999
for details and procedure for microsatellite development).
Variability at Gac4202 was tested using wild-caught three-
spined stickleback fish of the Roche population, lab-bred F1
fish from wild-caught parents of a population from the
Wohlensee (near Bern, Switzerland, 46° 57" N, 7° 28" E) (see
Mazzi and Bakker 2003 for standardised conditions of rearing
and maintenance) and wild-caught fish from a Dutch anadro-
mous population on the island of Texel (53° 03’ N, 4° 48’ E).

@ Springer

Based on the complete 850-bp-long sequence of the micro-
satellite clone Gac4202, which was derived from a female
fish, a molecular sex test was developed by amplifying a sex
chromosome specific length polymorphism using the N1-1
and Alt-1REV primers (Table 1), i.e. a ca. 271-bp-long frag-
ment on the X chromosome and a ca. 813-bp-long fragment
on the Y chromosome, respectively.

The generality of the applicability of the sex test was tested
with fresh or 97% ethanol samples of adult wild-caught fish
from the following European three-spined stickleback popula-
tions: a pond population from Euskirchen near Bonn, Germany
(50° 38" N, 6° 47" E), an anadromous population from the
island of Texel, the Netherlands (53° 3’ N, 4° 48’ E) and a
population from the slightly acid lake Loch Tormasad on the
island of North Uist, Hebrides, Scotland (57° 33’ N, 7° 19’ W).

In addition to molecular sexing, the sex of all adult fishes
was determined by inspection of the gonads.

Sequencing

Genomic DNA was prepared from muscle tissue following a
phenol-chloroform extraction method (Sambrook et al. 1989).
Primers used for the amplification of a region at the 5" end of
the Gac4202 microsatellite that included two insertions on the
Y chromosome were N1-1 and Alt-1REV (Table 1). PCR
products of the X and Y chromosomal fragments were cloned
using the Advantage PCR Cloning Kit (Clontech), following
the instructions of the manufacturer. Sequencing of cloned
PCR fragments encompassing the Y- and X- chromosomal
amplification products of several females and males of the
three above-mentioned populations (Roche, Wohlensee and
Texel) was done in order to estimate the degree of sequence
conservation in this region. Cloning and DNA sequencing was
done following Largiadeér et al. (1999) and Heckel et al. (2002).

Sex test

Genomic DNA was prepared from whole animals (juveniles) or
dorsal spines (adults) according to a Chelex resin (Bio-Rad)
extraction protocol (Estoup et al. 1993). PCR amplifications
were done in a 10 pL volume using a thermocycler (T1
Thermoblock, Biometra). Each reaction contained 2 pLL DNA
extraction, 0.3 pL of each primer (10 pmol/uL), 0.05 puL Taq
polymerase (5 u/uL), 0.2 pL dNTPs (10 mM), 1 pL buffer YS
(10x), 2.0 uL Enhancer Sol P and 4.15 uL distilled water. The
reaction conditions were: initial denaturation at 94 °C for 5 min,
followed by 30 cycles consisting of 30 s at 94 °C, 30 s at 57 °C
and 1 min at 72 °C, then a final extension cycle of 10 min at
72 °C, then cooled down at 12 °C. Amplification products were
separated and made visible with ethidium bromide on 1.5% or
2% mini agarose gels, together with a DNA size standard
(GeneRuler 50 bp or 100 bp DNA Ladder, Fermentas). Exact
allele sizes were determined using a CEQ 8800 or CEQ 8000
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Table 1 Sequences of the primer

pairs (F: forward, R: reverse) to Primer pair name  Primer sequence 5'-3' Amplified region Position*

amplify insertion 1, insertion 2,

insertion 1 + 2 and the Alt-1 F: CGGGGCGATGGCAACGAC Microsatellite Gac4202 1130-1147

microsatellite Gac4202 Alt-2 R: CACGCGCCCTTTCCACTCAG 1300-1319
NI-1 F: CATTACAGAAGATGCATTGTTCAG  Y-chromosomal insertion 330-353

1+2

Alt-1REV R: GTCGTTGCCATCGCCCCG 1130-1147
NI1-1 F: CATTACAGAAGATGCATTGTTCAG  Y-chromosomal insertion 1 330-353
N2-1REV R: ATCTCTGACACTCACAGGTG 809-828
N2-1 F: ACCTGTGAGTGTCAGAGATG Y-chromosomal insertion 2~ 810-829
Alt-1REV R: GTCGTTGCCATCGCCCCG 1130-1147

*Position of primer sequence in the alignment given in supplementary Fig. S1

capillary sequencer (Beckman-Coulter® GmbH) and 400 bp
(Kit-400, AB Sciex) and 1000 bp (MapMarker 1000,
BioVentures) sizing standards. Three sex tests were performed
(Table 1): one covering both insertions on the Y chromosome
(primer pair N1-1 and Alt-1REV), one covering insertion 1
(primer pair N1-1 and N2-1REV) and one covering insertion
2 (primer pair N2-1 and Alt-1REV).

Results
Microsatellite Gac4202

In the Roche and Wohlensee populations, the microsatellite
Gac4202 showed a sex-linked inheritance: the Y-
chromosomal band was invariably 185 bp long, while there
was allelic variation on the X chromosome: 164 and 166 bp
(and a null allele as deduced from a missing band on the X
chromosome in some males and females) in the Roche popu-
lation and 164, 170 and 172 bp in the Wohlensee population.
So, males and females could be distinguished on the basis of
the presence or absence of the longer Y-chromosomal band.
The sex-linked XY inheritance was fully confirmed by com-
paring allele sizes at Gac4202 of adult progeny (163 females,
159 males; sex also determined by dissection) and their par-
ents (24 females, 16 males) of the Wohlensee population. On
average, 13.4 progeny (range 8—23) per cross were analysed.
In the anadromous, genetically heterogeneous Texel popula-
tion (Heckel et al. 2002), there existed more than 20 alleles on
both the X and Y chromosome, with great overlap in allele
sizes between the chromosomes. The complex band pattern
did not allow sex identification on the basis of Gac4202. We,
therefore, characterised a region at the 5’ end of Gac4202 in
order to develop a more universal sex test.

Y-chromosome insertions

Sequencing a region at the 5’ end of Gac4202 revealed two
insertions on the Y chromosome of males from the Roche,

Wohlensee and Texel populations (Figs 1 and 2,
supplementary Fig. S1) compared to the X chromosome.
The insertion closest to Gac4202 (called insertion 2) mea-
sured 238 bp, followed by a 89-bp-long region on both the Y
and X chromosomes, and a second larger insertion (called
insertion 1) of 307 bp. The insertions are well conserved,
showing low variation among the ten cloned Y chromosom-
al fragments of fish from three populations (SNPs and indels
at maximal 13.2% of the positions, excluding polymor-
phisms based on ambiguous nucleotides: 6.4%; supplemen-
tary Fig. S1). The 12 cloned X-chromosomal fragments and
corresponding regions on the ten Y chromosomes were sig-
nificantly more variable, showing SNPs and indels at max-
imal 30.7% (minimum when excluding ambiguous nucleo-
tides: 18.2%) of the positions (supplementary Fig. S1) (dif-
ference in SNP and indel frequency between inserts and
others regions: G test, G = 30.3, df = 1, p < 0.001, and
G=22.7,df=1, p<0.001, respectively). SNPs and indels
were present between populations and between sexes and
also among individuals within populations. Finally, se-
quence variation was even detected among cloned frag-
ments of the same individual, which can be explained by
in vitro errors of the polymerase during PCR amplification.
Thus, the observed sequence variation probably represents
an overestimation. We can not, however, exclude the possi-
bility that this intra-individual sequence variability may al-
so point to the existence of multiple copies of these frag-
ments in the genome.

Blast searches (Zhang et al. 2000) indicated high sequence
similarity with a G. aculeatus whole genome shotgun se-
quence (AANHO01001637.1; contig no. 1.001636) (Fig. 1,
supplementary Fig. S1). This sequence is part of a draft stick-
leback genome (Jones et al. 2012) and is located on chromo-
some 19, which was identified as the X chromosome.
Interestingly, the sequence has been derived from a single
female individual (Jones et al. 2012), it lacks insertion 1 but
not insertion 2, which is 3 bp longer (241 bp instead 0of 238 bp)
than that observed for all cloned Y-chromosomal PCR frag-
ments (Fig. 1, supplementary Fig. S1).

@ Springer
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Fig. 1 Schematic representation of the sequence alignment of the cloned
Y- and X- chromosomal PCR fragments with the Gasterosteus aculeatus
(accession number: AANH01001637.1) whole genome shotgun

The Y-chromosomal insertions offered simple molecular
sex tests that produced two clearly separated bands in males
and one band in females. Amplifying insertion 1 + 2 produced
aca. 271-bp band in females and both a 271-bp and a ca. 813-
bp band in males, amplifying insertion 1 produced a ca. 190-
bp band in females and both a ca. 190-bp and a ca. 497-bp
band in males and amplifying insertion 2 produced a ca. 100-
bp band in females and both a ca. 100-bp and a ca. 338-bp
band in males (Figs 1, 2 and 3).

Applicability of sex test

In all five European three-spined stickleback populations, the
sex test involving insertions 1 and 2 gave unambiguous re-
sults: two bands in males and one band in females (Table 2,

Fig. 2 Schematic representation
of two insertions on the Y
chromosome at the 5’ end of the
Gac4202 sex-linked
microsatellite in G. aculeatus.

Indicated are sizes in bp, as well 141 bp

insertion 1
307 bp

sequence contig no. 1.001636 and the microsatellite clone Gac4202
sequence. See supplementary Fig. S1 for a detailed alignment

Fig. 3). There existed some variation in allele size within and
between populations on the Y chromosome and, to a more
limited extent, on the X chromosome (Table 2).

Discussion

Crosses of three-spined sticklebacks from the Swiss
Wohlensee population with different alleles at the microsatel-
lite Gac4202 confirmed the XY sex-determination system that
had been characterised by Peichel and co-workers (Peichel
et al. 2004; Ross and Peichel 2008; Urton et al. 2011). By
sequencing the 5’ end of the sex-linked microsatellite
Gac4202, we found two insertions of 238 bp and 307 bp,
respectively, separated by 89 bp, on the Y chromosome of

insertion 2
238 bp

as the name of the primers used to Y
amplify insertion 1, insertion 2,

_A71bp
| microsatellite =

microsatellite 3

insertion 1 + 2 and the X5

microsatellite primer name N1-1
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Fig.3 Part of ethidium bromide stained agarose gel showing an example
of sex tests based on insertion 1 + 2 with males and females from various
European three-spined stickleback populations. DE: German population
(Euskirchen), NL: Dutch population (Texel) and GB: Scottish population
(Loch Tormasad). Each lane represents a single sample. ¢ and @ indicate
male and female, respectively. The far right lane shows a 1000 bp size
standard

the three-spined stickleback that were absent on the X chro-
mosome (see also Peichel et al. 2004). The sequences obtain-
ed from this study mapped to the X chromosome 19 of the
three-spined stickleback draft genome (Jones et al. 2012) in an
apparently non-coding region. In comparison to our X- and Y-
chromosomal sequences, the reference genome, which had
been derived from a single female stickleback from Alaska
(Jones et al. 2012), had a chimeric organisation possessing
one of the presumably Y-chromosome specific introns. This
may indicate a recombination event between the Y and X
chromosomes in this population. Alternatively, there could
be an insertion on the Y chromosome that is unique to the
European populations sampled.

Amplification of the region containing the two insertions
yielded a very reliable molecular sex test in different

populations: in over 50 fish tested of six stickleback popula-
tions, males yielded two well-separated bands, while females
yielded one. The sexing was done easily and rapidly by PCR
amplification of DNA of this region, followed by separation
on an agarose minigel.

Our test adds to the molecular sexing tests in the three-
spined stickleback. Molecular sexing is a powerful tool and
has been applied in various research areas using sticklebacks,
such as parasitology (Arnold et al. 2003), ecotoxicology
(Hahlbeck et al. 2004; Bernhardt et al. 2006), ontogeny
(Lewis et al. 2008), genetics (Stérner et al. 2004), endocrinol-
ogy (Bell et al. 2007) and evolutionary biology (Lenz et al.
2009; Bell et al. 2011; Leinonen et al. 2011a, b; Loehr et al.
2012; Ramler et al. 2014).

Also, for the nine-spined stickleback, Pungitius pungitius,
which is emerging as another stickleback model for evolution-
ary biology, genetic and behavioural research (Merild 2013), a
reliable sex-specific microsatellite has previously been devel-
oped (Shikano et al. 2011a). It had been applied by Shikano
and Merild (2011) in a comparative study on body size and
vertebrae number.

Sexing was 100% reliable with our sex test (this study) and
is, thus, more reliable than the molecular sex tests that had been
developed for the three-spined stickleback thus far. Griffiths
etal. (2000) also reached 100% reliability of their test in 53 fish
from three three-spined stickleback populations. However, in a
study of a Swedish population, the control band that should
show up in both sexes proved not to be reliable, with variable
reliability between broods (Hahlbeck et al. 2004). Males were,
therefore, much more reliably identified than females with the
Griffiths et al. (2000) test in that population. The average reli-
ability of the sex test of Peichel et al. (2004) as assessed with
nearly 400 fish from crosses between ecotypes was higher than
99% (error rate in one cross 1.52% and in the other cross
0.61%). In Toli et al. (2016), the error rate for the /dh marker
varied greatly, that is, between 0% and 51%, depending on the
population and scorer. Per population, about 50 fish were
sexed and the agarose gels judged by four scorers. The error
rate of the other markers was much lower: on average, 0% and

Table2  Amplification products (number of bands separated by 200 bp or more and allele sizes) made visible on agarose gels of DNA from males (m)
and females (f) of various European populations of Gasterosteus aculeatus. Primers used were developed for insertion 1 (1), insertion 2 (2) or insertion

1+2 (1 +2) at the 5’ end of Gac4202 in G. aculeatus

Population Sex No. No. of Allele sizes of 1 No. of Allele sizes of 2 No. of Allele sizes of 1 +2
of fish bands 1 bands 2 bands 1 +2

Texel, NL m 5 2 197, 494 2 95, 335 2 274, 838/840

Texel, NL f 5 1 197 1 95 1 274

Euskirchen, DE m 5 2 195/197, 494/496 2 95, 335 2 274, 836/838

Euskirchen, DE f 5 1 197 1 95 1 274

Tormasad, GB m 4 2 197, 494 2 95, 335 2 274, 836/838/840

Tormasad, GB f 5 1 197 1 95 1 274
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1.7% for the Gasm6 and Stnl90 markers, respectively (Toli
et al. 2016). In order to minimise errors of sex identification,
Toli et al. (2016) strongly advocate a multi-marker approach.
The errors with these different markers could be due to several
factors, such as the phenotypic sex identification was incorrect,
the marker recombined with the sex determination locus, dif-
ferent populations do not share the same X and Y alleles or the
genetic marker is unreliable. Our sex identification test has the
advantage that bands are far apart (more than 200 bp), thereby
minimising inter-scorer variability and user error. The presence
of one of the Y-chromosomal insertions in the reference ge-
nome suggest that our tests involving insertion 2 may not be
applicable to three-spined sticklebacks of all three evolutionary
lineages (i.e. Pacific, Atlantic, Japanese Sea; Toli et al. 2016).
Future research has to verify this.

Significantly fewer SNPs and indels were assessed within
than outside the insertions for unknown reasons. An open
question is the source and function of the inserted sequences,
but it cannot be excluded that the variation is partly due to
errors of the polymerase during PCR amplification. All inves-
tigated males had the large insertions on the Y chromosome,
while these were lacking on all investigated X chromosomes,
so recombination seems to be suppressed.

Sample sizes in the present study were too low to complete-
ly comprise allelic variation at the loci used for the sex tests.
The results point to the presence of limited intra- and inter-
populational variation that should be further explored in future
studies.

DNA for the sex test was extracted from spines of adult
fish. Spine clipping is a common way to mark three-spined
sticklebacks both in the laboratory and in the field (e.g. Bakker
and Mundwiler 1994). It has been shown not to reduce sur-
vival and only temporarily increases immune responses
(Wedekind and Little 2004; Henrich et al. 2014). Therefore,
the new sex test is not only applicable in dead specimens, but
can also be used in live fish.

To sum up, this study provides a cheap, easy and highly
reliable way to determine the sex of three-spined sticklebacks
of varying age and of different European populations. The sex
identification test is an improvement and/or alternative to
existing methods (Griffiths et al. 2000; Peichel et al. 2004;
Toli et al. 2016). Thus, it gives researchers working on this
supermodel a useful tool to include sex as an explaining var-
iable in their studies.
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Fig. S1 Sequence alignment of the cloned Y- and X- chromosomal PCR-fragments
with the Gasterosteus aculeatus (accession number: AANH01001637.1) whole
genome shotgun sequence contig no. 1.001636 and the microsatellite clone
GAC4202 sequence. Cloned fragments are aligned without primer sequences. Of the
ca. 10,000 assessed nucleotides 1.5% could not be unambiguously determined
(indicated by N). Labels for cloned fragments are given as:
“Population”_“Individual“/“Number of clone“/“Y or X chromosomal fragment*

-: indicates deletion (or insertion at this position in other fish)



gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1 Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1 Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

60 80

40

| | |
A TATTGGETTT cGATHATGTTGT CHATABTTTT TARGEBTTTT
A TATTGGETTT GATHTGTTGT

TTTTG TATTH
TTTTG TATT

TGTTATTGAR GT
TGTTATTGAT GTT




gb|AANH01001637.1| BT GE
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1'Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X
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gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1'Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X




gb|AANH01001637.1]|
Clone GAC4202

Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1'Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X
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gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X
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gb|AANH01001637.1| GEGGGEEBGHAG B
Clone GAC4202 GEBGG- - BGHG
Roche M33/3Y - .-
Roche M33/4 Y
Roche M39/3 Y -
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X

Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X

1,300
|
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gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X
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gb|AANH01001637.1]|
Clone GAC4202
Roche M33/3 Y
Roche M33/4 Y
Roche M39/3 Y
Roche M39/4 Y
Roche M39/5 Y
Roche M39/6 Y
Texel 035/1Y
Texel 099/1Y
Texel 099/6 Y
W.see MN1/1Y
Roche F32/3 X
Roche F32/5 X
Roche F32/8 X
Roche F32/9 X
Roche F32/10 X
Roche M33/10 X
Roche M33/15 X
Roche M39/11 X
Roche M39/20 X
Texel 099/2 X
Texel 099/5 X
W.see W12/5 X
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