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Abstract
Vertebrate cellular immunity displays substantial variation among taxa and environments. Hematological parameters such as 
white blood-cell counts have emerged as a valuable tool to understand this variation by assessing the immunological status of 
individuals. These tools have long revealed that vertebrate cellular immune systems are highly plastic and respond to injury 
and infection. However, cellular immune systems may also be able to anticipate a high risk of injury from environmental 
cues (e.g., predation-related cues) and respond plastically ahead of time. We studied white blood-cell (leukocyte) profiles in 
African cichlids Pelvicachromis taeniatus that were raised for 4 years under different levels of perceived predation risk. In a 
split-clutch design, we raised fish from hatching onwards under chronic exposure to either conspecific alarm cues (communi-
cating high predation risk) or a distilled water control treatment. Differential blood analysis revealed that alarm cue-exposed 
fish had twice as many lymphocytes in peripheral blood as did controls, a condition called lymphocytosis. The presence of 
a higher number of lymphocytes makes the cellular immune response more potent, which accelerates the removal of invad-
ing foreign antigens from the bloodstream, and, therefore, may be putatively beneficial in the face of injury. This observed 
lymphocytosis after long-term exposure to conspecific alarm cues constitutes first evidence for an anticipatory and adaptive 
plastic response of the cellular immune system to future immunological challenges.

Keywords Pelvicachromis taeniatus · Hematology · Lymphocytes · Phenotypic plasticity · Alarm cues

Introduction

To protect themselves against pathogens, the vertebrate 
immune system has evolved highly effective cellular immu-
nity, of which white blood cells, also called leukocytes, are 

an important component. There are different types of leu-
kocytes, ranging from cells with phagocytotic activity (neu-
trophils) to those that produce proteins such as antibodies 
(specialized lymphocytes called B cells). Hence, both the 
absolute amount and the relative frequency of different leu-
kocytes characterize the cellular immune system response. 
Therefore, hematology, the study of blood, was developed 
since the 1920s as a valuable and highly informative medi-
cal diagnostic tool (Wintrobe et al. 1974). Researchers have 
since used differential leukocyte counts for studying varia-
tion in wildlife immune responses (Davis et al. 2008), but 
this variation is still not fully understood (Maceda-Veiga 
et al. 2015). Most previous studies have been conducted in 
a medical, toxicological, and animal ethics context, and thus 
focus on the consequences of exposure to environmental fac-
tors that disturb physical integrity such as toxins (Eeva et al. 
2005; Villa et al. 2017), parasites, and pathogens (Davis 
et al. 2004; Lobato et al. 2005; Burnham et al. 2006), sub-
optimal nutrition, temperature, or humidity levels (Bennett 
and Daigle 1983; Altan et al. 2000; Brown and Shine 2018; 
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Włodarczyk et al. 2018; Roast et al. 2019), as well as animal 
handling (Morrow-Tesch et al. 1993; Dhabhar et al. 1994; 
Kock et al. 1999; Lance and Elsey 1999; Zapata et al. 2004; 
Davis and Maerz 2011). Only a few studies have investi-
gated variation in differential leukocyte counts from other 
perspectives, such as phylogenetic comparisons between 
species (Minias et al. 2018; Downs et al. 2020) or ontogeny-
related variation in cellular immunity (Dehnhard et al. 2011; 
Jakubas et al. 2015).

However, to our knowledge, no previous study has con-
sidered that vertebrate cellular immune systems may also 
respond adaptively to non-integrity-disturbing cues that are 
indicative of an environment with increased injury risk. In 
the face of possible future injury, a cue-induced prolifera-
tion of cellular immune system components has the potential 
to fight off pathogens early and thereby may vastly reduce 
disease-related fitness costs. This may constitute another 
case of how adaptive phenotypic plasticity allows individu-
als to adapt to changing environments (West-Eberhard 2003; 
Scheiner et al. 2020), similar to how prey animals respond 
plastically to the key ecological factor predation (Lima and 
Dill 1990; Nosil and Crespi 2006). During antipredator phe-
notypic plasticity, cues that communicate high predation risk 
induce plastic modifications in the behavior, morphology, 
and life-history of prey animals, which increases individ-
ual fitness in a predatory habitat (Ghalambor et al. 2007; 
Kishida et al. 2010; Bourdeau and Johansson 2012). As pre-
dation is an environmental factor that substantially increases 
injury risk in any given environment (e.g., Reimchen 1988), 
it also provides a well-suited context for research on the 
adaptive plasticity of cellular immune systems. In verte-
brates, antipredator phenotypic plasticity has first been dis-
covered in a fish species, the crucian carp Carassius caras-
sius. In this species, exposure to predators (Brönmark and 
Miner 1992) or to conspecific alarm cues (Stabell and Lwin 
1997) triggers the development of a deeper body morphol-
ogy (i.e., increased dorsoventral height) that decreases the 
risk of being swallowed by gape-limited piscivores such as 
the pike Esox lucius (Nilsson et al. 1995). Similar patterns of 
morphological antipredator plasticity have since then been 
confirmed in many other fish species (Eklöv and Jonsson 
2007; Januszkiewicz and Robinson 2007; Frommen et al. 
2011; Meuthen et al. 2018a, 2019e). While there is also a lot 
of evidence for behavioral (Ferrari et al. 2015; Kim 2016; 
Meuthen et al. 2019d, 2019c) and life-history antipredator 
phenotypic plasticity (Reznick and Endler 1982; Belk 1998; 
Johnson and Belk 2001; Dzikowski et al. 2004) across fish 
taxa, no single study has considered that the fish cellular 
immune system may likewise respond with adaptive plastic-
ity to perceived predation risk.

Fish hematology has a long history (Hesser 1960; Blax-
hall and Daisley 1973), and this is why, fish are a well-stud-
ied, non-human vertebrate group in terms of their leukocyte 

responses (Davis et al. 2008; Burgos-Aceves et al. 2019). 
Ichthyologists consider fish leukocyte responses one of the 
most sensitive indicators of stress (Wedemeyer et al. 1990). 
Hence, many researchers have studied changes in fish leu-
kocyte frequencies following exposure to stressors. Some of 
these researchers suggest that exposure to stress increases 
neutrophil numbers (neutrophilia) and decreases lympho-
cyte counts (lymphopenia), which leads to an elevated 
neutrophil:lymphocyte ratio (Larsson et al. 1980; Pulsford 
et al. 1994; Witeska 2005; Campbell 2012; Grzelak et al. 
2017). In contrast, other studies report that exposure to 
stressful environmental factors induces an increase in lym-
phocyte frequency (lymphocytosis) and a decrease in neutro-
phils (neutropenia) (Johansson-Sjöbeck and Larsson 1978; 
Nussey et al. 1995). Although they had diverging results, 
these studies were similar in that they performed acute expo-
sure to environmental factors that disturb individual physical 
integrity. Even when there is mention of a chronic expo-
sure protocol, this refers to a period of no more than up to 
9 weeks and a 9-week exposure period was only applied in 
a single study (Johansson-Sjöbeck and Larsson 1978). How-
ever, because fish are ectothermic, the time course of fish 
leukocyte patterns is lengthy (Davis et al. 2008), and hence, 
they reflect long-term stress more accurately than short-term 
stress as directly shown in a study with the channel catfish 
Ictalurus punctatus (Bly et al. 1990). Hence, there is a clear 
need for more long-term research to understand patterns of 
phenotypic plasticity in fish leukocytes.

Here, we study differential leukocyte profiles in response 
to long-term perceived predation risk in the Western African 
cichlid Pelvicachromis taeniatus (Lamboj 2004), also known 
as P. kribensis (Lamboj 2014). This socially monogamous, 
stream-dwelling fish with complex mutual mate choice 
(Thünken et al. 2012) and biparental care (Thünken et al. 
2010) is a prime example for antipredator phenotypic plastic-
ity. In this species, predation risk is communicated through 
alarm cues that are detected by conspecifics (Meuthen et al. 
2014, 2018b). Long-term exposure to high perceived preda-
tion risk as communicated through these cues during develop-
ment plastically induces generalized neophobia (Meuthen et al. 
2016). In adult fish, high perceived risk during development 
induces male-specific morphological modifications (Meuthen 
et al. 2018a), alters loser strategies during intrasexual com-
petition (Meuthen et al. 2019a), and plastically adjusts mate 
preferences by lowering investment into mate choice (Meuthen 
et al. 2019b). Our aim here was to study the impact of the same 
developmental environment on the cellular immune system in 
the P. taeniatus individuals from the studies by Meuthen et al. 
(2016), Meuthen et al. (2018a), Meuthen et al. (2019b), and 
Meuthen et al. (2019a). To ensure that we studied antipredator 
plasticity in the differential leukocyte profiles of P. taeniatus 
rather than a short-term response to environmental modifi-
cation, we investigated the immune response of P. taeniatus 
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after individuals had completed more than half of their lifetime 
under high perceived predation risk. P. taeniatus reaches sex-
ual maturity at 1–1.5 years age and can live up to 6 years in age 
(D. Meuthen, personal observation), and hence, we sampled 
fish at 4 years of age. At this time point, we obtained blood 
samples from P. taeniatus that had been raised under continu-
ous exposure to either alarm cues or a water control treatment. 
With these samples, we then prepared stained peripheral blood 
smears and obtained differential leukocyte counts with light 
microscopy. Lymphocytes, the immune cells that have cyto-
toxic capabilities and produce antibodies (Campbell 1996), 
are the most common leukocytes in fish (Campbell 2012). 
Because they play a crucial role in host defense against patho-
gens (e.g., Rouse and Babiuk 1975; Gautreaux et al. 1994), an 
increased lymphocyte frequency (lymphocytosis) is a com-
mon response to infections across vertebrates and in fish also 
occurs in response to a high-quality diet (Fagbenro et al. 2013; 
Rashidian et al. 2020). The fact that vertebrates with immu-
nodeficient mutations causing lymphopenia are particularly 
susceptible to infections (mice: Bosma and Carroll 1991; Roz-
engurt and Sanchez 1993; humans: Buckley et al. 1997; Villa 
et al. 2001) demonstrates the protective role of lymphocytes. 
Accordingly, a higher number of lymphocytes may acceler-
ate the removal of pathogens from the bloodstream, and are 
therefore putatively beneficial in the face of injury.

However, increased lymphocyte production is not with-
out costs—it requires a higher resource investment, and it is 
also likely to accumulate DNA replication errors, which may 
ultimately lead to cancerous growth (Stetler-Stevenson 2005; 
Vineis et al. 2010; Greaves and Maley 2012). Hence, only in 
individuals that inhabit an environment with elevated risk of 
injury, such as an environment with high perceived predation 
risk, lymphocytosis would constitute a putatively beneficial 
plastic response of the cellular immune system. Consequently, 
we predict a higher number of lymphocytes in alarm cue-
exposed P. taeniatus as opposed to controls. Alternatively, as a 
typical stress response, we would expect lower lymphocyte and 
higher neutrophil numbers in peripheral blood, which causes 
an elevated neutrophil:lymphocyte ratio (Larsson et al. 1980; 
Pulsford et al. 1994; Witeska 2005; Campbell 2012; Grzelak 
et al. 2017). Because leukocyte patterns might be sex-depend-
ent (Evans 2008) and previous research highlights the rele-
vance of sex-specific plasticity in the study species (Meuthen 
et al. 2018a) and other fishes (Meuthen et al. 2019e), we also 
considered the sex of the experimental fish in our analyses.

Materials and methods

Rearing and treatment protocol

The fish used in the present experiment were derived from 
60 wild-caught individuals collected in June 2007 from the 

Moliwe river in Cameroon (04°04′ N, 09°16′ E) that were 
afterwards bred in captivity. In 2012, adult F1 fish were 
paired up in different combinations so as to set up 12 out-
bred pairs, from which we derived the clutches used in the 
present study. After collecting the clutches, we split them 
into two equally sized groups and then exposed fry from 
hatching onwards for 5 days a week over 3 years to two 
different chemical cues that communicated different levels 
of perceived predation risk. First, to control for possible 
effects of frequent water disturbance, we applied a low-risk 
control treatment that consisted of exposure to distilled 
water. Second, we exposed the other half of each clutch 
to conspecific alarm cues derived from ground whole 
conspecifics (a combination of four male and four female 
donor fish in every instance) in a concentration of 7.2 mg/l 
as a proxy for high perceived predation risk; alarm cue 
preparation has been described in more detail in Meuthen 
et al. (2019b). The applied alarm cue concentration has 
previously been shown to induce behavioral (Meuthen 
et al. 2016, 2019a, b) and morphological (Meuthen et al. 
2018a) antipredator phenotypic plasticity in P. taenia-
tus and in other fish species (Chivers and Smith 1994). 
The benefits of using conspecific alarm cues to generate 
high perceived predation risk are that fish do not habitu-
ate to them even after chronic exposure, while they do in 
response to predator odors (Imre et al. 2016). Furthermore, 
exposure to conspecific alarm cues is known to generate 
similar phenotypes as in fish from natural water bodies 
that house predators (Stabell and Lwin 1997; Laforsch 
et al. 2006; Meuthen et al. 2019d). Throughout rearing, 
fish were kept in mixed-sex groups of up to ten individu-
als per tank; we increased tank sizes sequentially to con-
form to the increased space requirements of growing fish 
(age 22–220 days: 20 × 30 × 20 cm, age 220–1664 days: 
50 × 30 × 30 cm). Furthermore, we matched food amounts 
to fish number and ontogenetic stage as antipredator plas-
ticity has been suggested to be limited by nutrient avail-
ability (Chivers et  al. 2008); stated are the days from 
which onwards the given food amounts were supplied: 
8–13 d: 10 µl/fish; 22-27d: 20 µl/fish; 50–55 days: 40 µl/
fish; 78–83 days: 60 µl/fish; 115–122 days: 80 µl/fish; 
150–157 days: 100 µl/fish; 185–192 days: 120 µl/fish; 
220–227 days: 140 µl/fish; 255–262 days: 160 µl/fish; 
297–304 days: 180 µl/fish; 339–346 days: 200 µl/fish. At 
first, food consisted of Artemia nauplii exclusively; from 
115–122 days onwards it was replaced by a mix of frozen 
Artemia sp. and Chironomus, Culex as well as Chaoborus 
larvae in a ratio of 2:1:0.25:1. Throughout rearing, fish in 
different tanks had no visual or olfactory contact, water 
temperature was kept constant at 24.5 ± 1.5 °C, and illu-
mination was provided by full-spectrum fluorescent tubes 
(Lumilux Cool Daylight 36 W/865, Osram, Germany) in 
a 12:12 light:dark cycle (from 8 am to 8 pm). In 2017, we 
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derived 4-year old fish (age 1488–1664 days) from this 
split-clutch design to study variation in cellular immune 
system responses between treatments.

Experimental procedure

To collect blood samples, we individually removed fish from 
their home tank and first assessed fish size (standard length: 
distance from the snout tip to the base of the tail fin) to the 
nearest millimeter with graph paper as well as fish body 
mass to the nearest milligram using a digital precision scale 
(LC221S, Sartorius, Göttingen, Germany). Afterwards, we 
immediately killed the fish by hypothermal shock as induced 
by immersion in ice slurry at 0–4 °C temperature to col-
lect blood samples. P. taeniatus did not show any signs of 
distress during this procedure and hypothermal shock is a 
well-established method of euthanasia that is less stressful 
for small, tropical fish relative to benzocaine and MS-222 
exposure (Wilson et al. 2009; Blessing et al. 2010; Lidster 
et al. 2017). Furthermore, exposure to MS-222 is known to 
modify blood properties and leukocyte histology (Palic et al. 
2006; Popovic et al. 2012) and is, therefore, unsuitable for 
the study of leukocyte profiles. Blood samples were then 
collected by puncturing the heart from below the gill cov-
ers with a 10 µl syringe (Microliter 701, Hamilton, USA). 
A small drop of blood was then put on a standard micro-
scope slide (soda-lime glass with frosted edge, H868, Carl 
Roth, Germany). Afterwards, we placed a second slide (edge 
ground at a 45° angle) at 40° degrees angle against the sur-
face of the first slide and drew it back to contact the drop 
of blood which then spread over the interface of the slide 
through capillarity. Then, we quickly pushed the slide in 
the opposite direction, which created a blood smear. We did 
not use anticoagulants so as to prevent modification of the 
morphology of certain leukocytes, which makes their clas-
sification difficult (Ellis 1977). We always prepared several 
slides per individual fish, which were then labeled with fish 
identity codes. Blood smears were left to dry for at least 
2 days. Afterwards, we conducted differential staining by 
May–Gruenwald–Giemsa (Pappenheim stain). The staining 
protocol consisted of first submerging slides for 3 min in an 
eosine methylene blue solution with at least 80% methanol 
for fixation (May–Gruenwald’s solution, T863, Carl Roth, 
Germany). Then, slides were rinsed with distilled water and 
afterwards submerged in an azure, eosine, methanol, and 
glycerin solution (Giemsa stock solution diluted in a ratio of 
1:20, T862, Carl Roth, Germany). Afterwards, slides were 
again rinsed with distilled water and then left to dry.

After all blood smears were stained and dried, the best 
slide (i.e., the slide that had the least signs of coagulation and 
the most intact cells) was selected for each individual, and 
blood smears were examined with an Axiolab light micro-
scope (Carl Zeiss, Jena, Germany) at 400 × magnification 

by a hematologist (IM) that was naïve as to individual treat-
ment. First, we conducted an initial qualitative differentia-
tion of the different white blood cells in this species (Fig. 1). 
Afterwards, to quantify cellular immunity levels, for each 
slide, we first estimated absolute leukocyte counts at an 
accuracy of ± 50 leukocytes/µl. Then, thin areas of the blood 
smears where erythrocytes overlapped for a maximum of 1/3 
of cell volume or alternatively, did not overlap at all, were 
examined for differential blood analysis. Here, we counted 
100 randomly selected leukocytes per slide and assigned 
counts to their respective cell type. We followed a stand-
ard leukogram procedure by counting lymphocytes, neu-
trophils, eosinophils, basophils, monocytes, and erythroid/
neutrophile precursors. As basophils, eosinophils, and pre-
cursors were very rare (found to be present in only 11.24%, 
1.24%, and 0% of all blood smears, respectively and equally 
distributed across treatments), we excluded them from our 
analysis. From these relative values, absolute blood counts 
were then calculated for each individual fish as well as the 
proportion of neutrophils:lymphocytes as this ratio is sug-
gested to be a reliable indicator of stress (Davis et al. 2008). 

Fig. 1  Photomicrographs (100 × magnification) displaying the mor-
phology of the peripheral blood cells in Pelvicachromis taeniatus. 
Peripheral blood smears were stained by May–Grünwald–Giemsa 
(Pappenheim stain). E Erythrocyte, L Lymphocyte, T Thrombo-
cyte, N Neutrophil, and M Monocyte. To allow a better comparison 
between different cell types, one lymphocyte (in the bottom image), 
the thrombocyte, and the neutrophil were copied from a photograph 
taken from a different area of the same blood smear at the same mag-
nification and inserted into the above images with an image editor. 
The scale bar equals 10 µm
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Observed lymphocytes were polymorph (different cell sizes, 
different core sizes, different core-cytoplasm ratios, and 
different chromatin structures) throughout. In total, we col-
lected blood from 44 alarm cue-exposed fish (21 females 
and 23 males) and from 45 control fish (27 females and 
18 males). At the point of sampling, males from different 
treatments did not differ in body size (median, interquartile 
range, IQR; alarm cue-exposed fish: 8.3 cm, 8.1–8.6 cm; 
control fish: 8.2 cm, 8.0–8.7 cm; Wilcoxon signed-rank 
test: W = 225, p = 0.644) or weight (alarm cue-exposed fish: 
7.182 g, 6.073–8.108 g; control fish: 6.937 g, 6.254–7.943 g; 
Wilcoxon signed-rank test: W = 214, p = 0.866). Likewise, 
females did not differ in body size (alarm cue-exposed fish: 
5.8 cm, 5.7–6.0 cm; control fish: 5.9 cm, 5.7–6.0 cm; Wil-
coxon signed-rank test: W = 253.5, p = 0.535) or weight 
(alarm cue-exposed fish: 2.876 g, 2.681–2.977 g; control 
fish: 2.897 g, 2.555–3.118 g; Wilcoxon signed-rank test: 
W = 275.5, p = 0.876) between treatments.

Statistical analysis

For statistical analysis, we used R 3.2.5 (R Core Team 
2016). After log-transformation, all variables met assump-
tions of normality according to Shapiro–Wilk tests (func-
tion “shapiro.test” in R package “stats”), and hence, we 
applied parametric tests throughout. We constructed linear 
mixed-effects models (function “lme” in R package “nlme”, 
Pinheiro et al. 2016) with maximum-likelihood parameter 
estimation throughout. Here, we always entered “fish fam-
ily” as random intercept so as to account for genetic effects. 
All results are based on likelihood ratio tests (LRT), which 
assessed whether the removal of a variable caused a signifi-
cant decrease in model fit according to the Aikake informa-
tion criterion; hence, degrees of freedom differed by one in 
all models. The reported P values refer to the increase in 
deviance when the respective variable was removed.

To determine how leukocyte profiles differed between 
individuals, we constructed a model with the respective 
blood parameter (leukocytes, lymphocytes, neutrophils, 

monocytes, and proportion neutrophils:lymphocytes) as 
dependent variable and “sex” (male, female) as well as 
“treatment” (alarm cue-exposed, control) as explanatory 
variable. To determine whether sexes differed in their 
response to the treatment, we analyzed the “sex × treat-
ment” interaction. When no significant interaction was 
present, we tested first for the general effects of sex, while 
treatment remained in the model as a covariate. Finally, 
when general sex effects were absent as well, we aimed to 
determine which blood parameter variation was affected 
by the treatment by testing treatment effects in the absence 
of any covariates. All initial and final models are available 
in the supplementary material (Online Resource 1).

Results

Male and female leukocyte profiles did not differ in 
their response to the treatment (“interaction sex × treat-
ment”, LRT: leukocytes, χ2 = 0.117, p = 0.732; lympho-
cytes, χ2 = 0.321, p = 0.571; neutrophils, χ2 = 0.006, 
p = 0.939; monocytes, χ2 = 2.585, p = 0.108; proportion 
neutrophils:lymphocytes, χ2 = 0.152, p = 0.697). In gen-
eral, male and female blood parameters did not differ sig-
nificantly (LRT; leukocytes, χ2 = 0.020, p = 0.888; lym-
phocytes, χ2 = 0.002, p = 0.965; neutrophils, χ2 = 0.022, 
p = 0.883; monocytes, χ2 = 0.725, p = 0.395; proportion 
neutrophils:lymphocytes, χ2 = 0.152, p = 0.697).

However, we found significant treatment effects 
(Table 1). Fish from the alarm cue exposure treatment 
had approximately 30% more leukocytes (LRT, χ2 = 5.693, 
p = 0.017), which was caused by a doubling of lymphocyte 
counts in alarm cue-exposed individuals (LRT, χ2 = 9.512, 
p = 0.002, Fig. 2). In contrast, the other blood parameters 
did not differ significantly between treatments: neutrophils 
(LRT, χ2 = 2.767, p = 0.096); monocytes (LRT, χ2 = 1.997, 
p = 0.158); proportion neutrophils:lymphocytes (LRT, 
χ2 = 0.222, p = 0.638). 

Table 1  Leukocyte profiles (mean ± SE) in peripheral blood smears of 4-year old. P. taeniatus that were lifelong subject to different levels of perceived 
predation risk: alarm cue-exposed fish (N = 44) and control fish (N = 45). All values are accompanied by the results of our final linear mixed-effect models 
that analyzed whether treatment explained variation in blood parameters, while fish family was included as a random intercept to account for our split-clutch 
design with multiple families

Cell type Control-exposed Alarm cue-exposed χ2 p

Leukocytes 805.556 ± 125.652/µl 1278.409 ± 190.695/µl 5.693 0.017
Lymphocytes 370.233 ± 43.368/µl 668.375 ± 91.803/µl 9.512 0.002
Neutrophils 416.633 ± 93.622/µl 580.034 ± 115.672/µl 2.767 0.096
Monocytes 17.461 ± 4.259/µl 28.727 ± 6.758/µl 1.997 0.158

Proportion neutrophils:lymphocytes 1.038 ± 0.130: 1 0.891 ± 0.090: 1 0.222 0.638
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Discussion

Our results revealed that alarm cue-exposed fish had a sig-
nificantly higher absolute number of leukocytes (i.e., total 
white blood cells) which was caused by a significantly 
greater number of lymphocytes in alarm cue-exposed P. 
taeniatus relative to the water control. Instead, we did not 
find evidence for changes in the frequency of other blood-
cell types or in neutrophil:lymphocyte proportions. Given 
the crucial role of lymphocytes in the host defense against 
pathogens (e.g., Rouse and Babiuk 1975; Gautreaux et al. 
1994), having a higher number of lymphocytes likely ben-
efits vertebrates in the face of injury, which is more likely to 
occur in an environment with high predation risk (Reimchen 
1988). Hence, this observed lymphocytosis is first evidence 
for putatively beneficial phenotypic plasticity in a vertebrate 
cellular immune system. More generally, it is also the first 
evidence for a preceding putatively beneficial immuno-
logical response in an environment with increased injury 
risk. While, in our study, we used non-integrity-disturbing 
cues that communicate high perceived predation risk, lym-
phocytosis has previously been observed as a response to 
dietary supplementation in the rainbow trout Oncorhyn-
chus mykiss (Rashidian et al. 2020), to copper exposure in 
the Mozambique tilapia Oreochromis mossambicus (Nus-
sey et al. 1995), and as a response to cadmium exposure 
in the flounder Pleuronectes flesus (Johansson-Sjöbeck and 
Larsson 1978). Likewise, in humans, chronic stress (Pereira 
et al. 2012), cigarette smoking (Chan et al. 1990; Tollerud 
et al. 1991; Delannoy et al. 1993; de Haan and Pouwels 
2006), or chronic viral and bacterial infections (Speight et al. 
1999; Halim and Ogbeide 2002; Sever-Prebilic et al. 2002; 
Chabot-Richards and George 2014) have all been suggested 
to induce lymphocytosis.

At first glance, our observation of an induced lympho-
cytosis in response to chronic exposure to high perceived 
predation risk appears contradictory to previous research. 
That is because similar to other stressors (Barcellos et al. 
2011), perceived predation risk is suggested to induce an 
increase in the levels of the stress hormone cortisol (a glu-
cocorticoid) as has previously been suggested in studies 
on fish transgenerational antipredator plasticity (Giesing 
et al. 2011; Sopinka et al. 2015). Elevated glucocorticoid 
levels then trigger a redistribution of leukocytes between 
body compartments (Davis et al. 2008): a rapid release of 
neutrophils from the head kidney into peripheral blood 
(which causes neutrophilia in the blood) and a mobilization 
of lymphocytes from circulating blood into compartments 
such as the skin, the spleen, and lymph nodes (which causes 
lymphopenia in the blood: Dhabhar et al. 1996; Dhabhar 
and McEwen 1997). This process then results in an elevated 
neutrophil:lymphocyte ratio in peripheral blood as has been 
shown multiple times as a consequence of exposing fish to 
other stressors (metals: Larsson et al. 1980; Witeska 2005; 
forced upside-down position: Pulsford et al. 1994; higher 
temperature and longer photoperiods: Campbell 2012; expo-
sure to air: Grzelak et al. 2017). Despite potential short-term 
benefits of having more lymphocytes in specific body com-
partments as a preparation for injury (Johnstone et al. 2012), 
other researchers consider stress-induced lymphopenia in 
peripheral blood to be an immunosuppressive condition that 
impairs wound healing as showcased in mice (Padgett et al. 
1998; Padgett and Glaser 2003).

However, cellular immune responses to glucocorticoid 
exposure are different when it comes to chronic stress where 
these hormones are released continuously. Under these con-
ditions, glucocorticoid receptor levels are typically down-
regulated (Svec and Rudis 1981; Vedeckis et al. 1989; Cohen 
et al. 2012) so as to avoid the negative effects on the verte-
brate body that is associated with prolonged glucocorticoid 
exposure (Russell and Lightman 2019). Because lympho-
cytes also carry glucocorticoid receptors, lymphocyte sensi-
tivity to glucocorticoid exposure decreases as well (Wodarz 
et al. 1991; Bauer et al. 2000). Likewise, neutrophil-secreted 
pro-inflammatory cytokines such as interleukin-8 are known 
to adjust the relative amounts of glucocorticoid receptors 
on other neutrophils so as to make them less sensitive to 
glucocorticoids, which avoids glucocorticoid-induced cell-
death (Strickland et al. 2001). Hence, under chronic stress, 
despite continued glucocorticoid release, both lymphocyte 
and neutrophil numbers in peripheral blood are supposed to 
reach normal levels again, and this is likely the reason why 
we did not observe an elevated neutrophil:lymphocyte ratio 
as is typical for most studies on the consequences of acute 
stress. However, the effect of glucocorticoids on the verte-
brate cellular immune system is now known to be more com-
plex than anticipated; they have not only anti-inflammatory 

/  
 

Fig. 2  Absolute lymphocyte numbers (mean ± SE) in peripheral 
blood smears of 4-year old P. taeniatus that were subject to a lifelong 
difference in levels of perceived predation risk (alarm cue-exposed 
fish, dashed bar, N = 44; control fish, white bar, N = 45). **p = 0.002
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effects such as lymphopenia, but contradictorily can also 
have pro-inflammatory effects such as lymphocytosis, a 
phenomenon that researchers have only recently started to 
understand (Cruz-Topete and Cidlowski 2015). Addition-
ally, lymphocyte frequencies are known to be more sensi-
tive to glucocorticoid levels compared to neutrophils (Cole 
et al. 2009). Hence, the putatively beneficial lymphocytosis 
that we observed in our study may still have been triggered 
through chronic predator-related glucocorticoid releases.

On the other hand, the plasticity-mediated maintenance 
of a chronic lymphocytosis is not without potential costs. 
This is because as the probability of mutations increases 
with each cell replication event, a chronically increased 
production of lymphocytes is likely to accumulate DNA 
replication errors. Clonal selection and tumor progression 
models (Stetler-Stevenson 2005; Vineis et al. 2010; Greaves 
and Maley 2012) predict that such mutations then have the 
potential to cause a switch from a beneficial lymphocytosis 
to a malignant lymphocytosis such as, for example, a mono-
clonal B-cell lymphocytosis (MBA). In humans, MBA is 
an asymptomatic precursor condition for malignant chronic 
lymphatic leukemia (Shim et al. 2010; Mowery and Lanasa 
2012). This theoretical tumor progression is confirmed by 
studies on humans, suggesting that persistent reactive pol-
yclonal B-cell lymphocytosis can develop into malignant 
disorders such as lymphomas (de Haan and Pouwels 2006; 
Xochelli et al. 2015). As these malignant diseases are lethal, 
a shorter lifespan induced by the observed chronic lympho-
cytosis is likely to constitute one of the costs of cellular 
immune system plasticity that is outweighed only in environ-
ments with high injury risk. In line with the theory that traits 
only evolve to be plastic if they are costly (Ghalambor et al. 
2007), this may be why an elevated proliferation of lympho-
cytes has evolved as a plastic rather than a fixed response.

Future studies are required to expand on our findings. 
Because of the low amount of blood that we could collect in 
our experimental fish (~ 0.5 to 5 µl per individual), we could 
not measure glucocorticoid concentrations as performing 
such an analysis requires approximately 30–60 µl of blood. 
Hence, it is important to set up studies that measure how 
vertebrate glucocorticoid concentrations change over time in 
an experiment with chronic (i.e., over 50% of an individuals’ 
lifetime) exposure to stress. Additionally, researchers should 
aim to reveal on a cellular level why chronic exposure to 
stress only impacts on lymphocyte but not neutrophil num-
bers or neutrophil:lymphocyte ratios. Furthermore, attempts 
should be made to directly determine the adaptive benefit 
of the observed lymphocytosis as induced by chronic expo-
sure to an environment with high perceived predation risk. 
To do so, one would have to artificially injure fish that had 
previously been chronically exposed to the same treatments 
as here and afterwards statistically compare wound healing 
speed, probabilities to develop diseases, as well as mortality 

rates between treatments. Further follow-up studies should 
also aim to directly measure the costs associated with 
chronic lymphocytosis by comparing the probability of leu-
kemia occurrence as well as maximum lifespan between fish 
from the same treatments. More generally, future research 
should also attempt to find additional examples for anticipa-
tory plasticity of vertebrate cellular immune systems, and 
to do so, expand the hitherto lacking research on the conse-
quences of chronic exposure to stressors that are associated 
with increased future injury probability. At the same time, 
immunological research should focus more on the impact 
of environmental cues that do not disturb physical integrity, 
which has been underrepresented to date.
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